埃拉托斯特尼筛法

(重定向自埃氏篩

埃拉托斯特尼筛法古希腊语κόσκινον Ἐρατοσθένους,英语:sieve of Eratosthenes),简称埃氏筛,是一种用来生成英语Generating primes素数筛法,得名于古希腊数学家埃拉托斯特尼。其基本步骤是从最小的素数2开始,将该素数的所有倍数标记成合数,而下一个尚未被标记的最小自然数3即是下一个素数。如此重复这一过程,将各个素数的倍数标记为合数并找出下一个素数,最终便可找出一定范围内所有素数。

埃拉托斯特尼筛法可能在埃拉托斯特尼的时代之前就已经为人所知[1]:14,并记载于另一位古希腊数学家尼科马库斯的《算术概论英语Introduction to Arithmetic》中,尽管该著作中的这一筛法是从3开始,从奇数中依次筛去奇数的倍数,而非从自然数中筛去素数的倍数[2]:242-243

使用埃拉托斯特尼筛法找出120以内的所有素数。由于112=121>120,当11成为最小的未标记整数时,尚未标记的所有数皆可确认为素数。请注意到在标记时直接从每个素数的平方开始。

运用与示例

编辑

埃拉托斯特尼筛法通过不断地标记当前素数的所有倍数为合数,从而取得最小的未标记整数为下一个素数。不过,在实际使用此筛法寻找一个范围内的素数时,不需要检查范围内所有整数,也不需要对每个素数都标记其所有的倍数。

  1. 寻找 以内的素数时,若找到了一个大于 的素数,则剩余的所有尚未标记的数也都是素数。
    证明:若这些尚未标记的数中有任意一个为合数,设之为 ,则 必定是除1与自身以外的两个因数的乘积。但既然 尚未被标记,则所有小于等于 的数均不是 的因数。故这两个因数必然都大于 ,则 不可能在 以内[3]:103-104[4]:4
  2. 标记某一素数 的倍数时,不需要每次皆从 开始,而可直接从 开始标记。
    证明:所有较 更小的 的倍数必然拥有一个更小的素数为其因数,故在标记之前的素数的倍数时它们已经被标记过了[5]

若要找出25以内的所有素数,使用如上述改进过的埃拉托斯特尼筛法的具体过程如下:

  1. 列出2以后所有数:
    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  2. 记录质数2,由22=4开始划去2的倍数:
    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  3. 记录下一质数3,由32=9开始划去3的倍数:
    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  4. 记录下一质数5,由52=25开始划去5的倍数:
    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  5. 下一质数为7,而72=49>25,故剩余所有未标记的数皆为质数:
    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

由此得到25内的质数为2,3,5,7,11,13,17,19,23。

以上的算法可用以下伪代码表示:

输入:整数n > 1
 
设A为布尔值矩阵,下标是2至n的整数,
初始时全部设成true。
 
 for i = 2, 3, 4, ..., 不超过 if A[i]为truefor j = i2, i2+i, i2+2i, i2+3i, ..., 不超过nA[j] := false
 
输出:使A[i]为true的所有i

埃拉托斯特尼筛法的时间复杂度 ;相比之下,若是通过对范围内每个整数进行试除法来找出范围内的素数,则其时间复杂度为 [1]:13-14[5]

程式码

编辑

Python 3.6-3.10

编辑
def eratosthenes(n):
    is_prime = [True] * (n + 1)
    for i in range(2, int(n ** 0.5) + 1):
        if is_prime[i]:
            for j in range(i * i, n + 1, i):
                is_prime[j] = False
    return [x for x in range(2, n + 1) if is_prime[x]]
print(eratosthenes(120))

C语言

编辑
int prime[100005];
bool is_prime[1000005];

int eratosthenes(int n) {
    int p = 0;
    for (int i = 0; i <= n; i++) {
        is_prime[i] = true;
    }
    is_prime[0] = is_prime[1] = 0;
    for (int i = 2; i <= n; i++) {
        if (is_prime[i]) {
            prime[p++] = i;
            if (1ll * i * i <= n) {
                for (int j = i * i; j <= n; j += i) {
                    is_prime[j] = 0;
                }
            }
        }
    }
    return p;
}

C语言新版

#include <stdio.h>
#include <stdlib.h>

/* N: positive integer
   verbose: 1 -- print all prime numbers < N, 0 -- no print
   return total number of prime numbers < N. 
   return -1 when there is not enough memory.
*/
int eratosthenesSieve(unsigned long long int N, int verbose) {
  // prime numbers are positive, better to use largest unsiged integer
  unsigned long long int i, j, total; // total: number of prime numbers < N
  _Bool *a = malloc(sizeof(_Bool) * N);

  if (a == NULL) {
    printf("No enough memory.\n");
    return -1;
  }
  
  /* a[i] equals 1: i is prime number.
     a[i] equals 0: i is not prime number.
     From beginning, set i as prime number. Later filter out non-prime numbers
  */
  for (i = 2; i < N; i++) {
    a[i] = 1; 
  }

  // mark multiples(<N) of i as non-prime numbers
  for (i = 2; i < N; i++) {
    if (a[i]) { // a[i] is prime number at this point
      for (j = i; j < (N / i) + 1; j++) {
	/* mark all multiple of 2 * 2, 2 * 3, as non-prime numbers;
	   do the same for 3,4,5,... 2*3 is filter out when i is 2
	   so when i is 3, we only start at 3 * 3
	*/
	a[i * j] = 0;
      }
    }
  }

  // count total. print prime numbers < N if needed.
  total = 0;
  for (i = 2; i < N; i++) {
    if (a[i]) { // i is prime number
      if (verbose) {
	printf("%llu\n", i);
      }
      total += 1;
    }
  }

  return total;
}

int main() {
  unsigned long long int a1 = 0, a2 = 0, N = 10000000;
  
  a1 = eratosthenesSieve(N, 1); // print the prime numbers
  printf("Total of prime numbers less than %llu is : %llu\n", N, a1);
  
  a2 = eratosthenesSieve(N, 0); // not print the prime numbers
  printf("Total of prime numbers less than %llu is : %llu\n", N, a2);
  
  return 0;
}
#include <vector>

auto eratosthenes(int upperbound) {
  std::vector<bool> flag(upperbound + 1, true);
  flag[0] = flag[1] = false; //exclude 0 and 1
  for (int i = 2; i * i <= upperbound; ++i) {
    if (flag[i]) {
      for (int j = i * i; j <= upperbound; j += i)
        flag[j] = false;
    }
  }	
  return flag;
}
eratosthenes <- function(n) {
  if (n == 1) return(NULL)
  if (n == 2 | n == 3) return(2:n)
  numbers <- 2:n
  primes <- rep(TRUE, n-1)
  for (i in 2:floor(sqrt(n))) {
    if (primes[i-1]) {
      for (j in seq(i * i, n, i))
        primes[j-1] <- FALSE
    }
  }
  return(numbers[primes])
}

JavaScript

编辑
const countPrimes = function (n) {
  const isPrime = new Array(n).fill(true);

  for (let i = 2; i <= Math.sqrt(n); i++) {
    if (isPrime[i]) {
      for (let j = i * i; j <= n; j += i) {
        isPrime[j] = false;
      }
    }
  }

  let count = 0;
  for (let i = 2; i < n; i++) {
    if (isPrime[i]) {
      count++;
    }
  }

  return count;
};

参见

编辑

参考文献

编辑
  1. ^ 1.0 1.1 Stefan Hougardy; Jens Vygen. Algorithmic Mathematics. Cham: Springer International Publishing Switzerland. 2016 [2024-01-05]. ISBN 978-3-319-39558-6. (原始内容存档于2024-01-05). 
  2. ^ Jean-Luc Chabert. A History of Algorithms: From the Pebble to the Microchip. Berlin, Heidelberg: Springer-Verlag. 1999 [2024-01-05]. ISBN 978-3-642-18192-4. (原始内容存档于2024-01-05). 
  3. ^ George M. Phillips. Mathematics Is Not a Spectator Sport. New York: Springer-Verlag. 2005 [2024-01-05]. ISBN 978-0-387-28697-6. (原始内容存档于2024-01-05). 
  4. ^ G. H. Hardy; E. M. Wright. An Introduction to the Theory of Numbers (Fourth Edition). Oxford: Clarendon Press. 1960. ISBN 978-0-19-853310-8. 
  5. ^ 5.0 5.1 Melissa E. O'Neill. The Genuine Sieve of Eratosthenes (PDF). Journal of Functional Programming. 2009, 19 (1): 95–106 [2024-01-05]. doi:10.1017/S0956796808007004. (原始内容存档 (PDF)于2024-07-26). 

拓展阅读

编辑