标准电极电势

维基媒体列表条目
(重定向自标准电极电位

标准电极电势是可逆电极在标准状态及平衡态时的电势,也就是标准态时的平衡电势,记作,上标表示标准态。标准状态的溶质活度每升1莫尔,气体压强10万Pa,温度一般为298K。 虽然电池的电动势可以直接测定,但单一可逆电极的标准电极电势却只有相对值没有绝对值,而且随温度、浓度和压强而变。电极电势的基准是标准氢电极:标准状态的H⁺/H₂电极电势定为0V,即,其他电极电势的值在此基础上获得。当某半电池和标准氢电池电极相连时为负极,该半电池的半反应的标准电极电势为负值,且绝对值与电池电动势相等;若为正极则相反。这样求得的值称作还原电势,总反应的标准电极电势也就是两个半反应标准电极电势的差,Eo为正时反应自发。 任何温度下标准氢电极的标准电极电势值都为0,但其他电极电势值会受到温度影响。以Ni/NiO电极为例,它可以用作高温伪参比电极,电极电势在0至400°C大致符合以下公式:[1]

,T为温度

标准电极电势可以实验或热力学计算获得。,标准氢电极的反应自由能是零,水合氢离子和水合电子的标准生成自由能也是零,这样便可计算众多无法用实验测得的标准电极电势值(如氟气)。标准电极电势没有加成性,要想求相加得到的第三反应的标准电极电势,还需要借助上述公式来求解。 标准电极电势不随半反应的方向和计量系数改变,但它受到浓度和反应物形态影响。非标态的电极电势值可以能斯特方程求得。标准电极电势值只是热力学数据,不可用于预测反应速率和其他动力学性质,而且它的值在水溶液体系中测定,不可用于其他溶剂或高温时的反应。

能斯特方程:

标准电极电势有很大的实用价值,可用来判断氧化剂还原剂的相对强弱,判断氧化还原反应的方向,计算原电池的电动势、反应自由能平衡常数,计算其他半反应的标准电极电势,等等。将半反应按电极电势由低到高排序,可以得到标准电极电势表,可十分简明判断氧还反应的方向。

标准电极电势表

编辑

表中电极电势以以下条件测得((s):固体;(l):液体;(g):气体;(aq):水溶液;(Hg):汞齐):

单击顶栏箭咀可将数据按元素符号、反应物、产物或标准电极电势值排序。

元素 氧化剂 半反应 还原剂 来源
Ba⁺+e⁻ Ba(s) −4.38 [2][4][11]
Sr⁺+e⁻ Sr(s) −4.10 [12][2][4][13]
Ca⁺+e⁻ Ca(s) −3.8 [12][2][4][13]
Th⁴⁺+e⁻ Th³⁺ −3.6 [14]
Pr³⁺+e⁻ Pr²⁺ −3.1 [15]
3N₂(g)+2H⁺+2e⁻ 2HN₃(aq) −3.09 [7]
Li⁺+e⁻ Li(s) −3.0401 [6]
N₂(g)+4H₂O+2e⁻ 2NH₂OH(aq)+2OH⁻ −3.04 [7]
Cs⁺+e⁻ Cs(s) −3.026 [6]
Ca(OH)₂(s)+2e⁻ Ca(s)+2OH⁻ −3.02 [12]
Er³⁺+e⁻ Er²⁺ −3.0 [16]
Ba(OH)₂(s)+2e⁻ Ba(s)+2OH⁻ −2.99 [12]
Rb⁺+e⁻ Rb(s) −2.98 [5]
Mg⁺+e⁻ Mg(s) −2.93 [11]
K⁺+e⁻ K(s) −2.92 [6]
Ba²⁺+2e⁻ Ba(s) −2.912 [6]
La(OH)₃(s)+3e⁻ La(s)+3OH⁻ −2.90 [17]
Fr⁺+e⁻ Fr(s) −2.9 [12]
Sr²⁺+2e⁻ Sr(s) −2.899 [6]
Sr(OH)₂(s)+2e⁻ Sr(s)+2OH⁻ −2.88 [12]
Ca²⁺+2e⁻ Ca(s) −2.868 [6]
氮(铵) NH₄⁺+e⁻ NH₄• −2.85
碳(碳锂) Li⁺+C₆(s)+e⁻ LiC₆(s) −2.84 [18]
Eu²⁺+2e⁻ Eu(s) −2.812 [6]
Ra²⁺+2e⁻ Ra(s) −2.8 [6]
Ho³⁺+e⁻ Ho²⁺ −2.8 [13]
Bk³⁺+e⁻ Bk²⁺ −2.8 [13]
Yb²⁺+2e⁻ Yb(s) −2.76 [12][2]
Na⁺+e⁻ Na(s) −2.71 [6][10]
Nd³⁺+e⁻ Nd²⁺ −2.7 [13]
Mg(OH)₂+2e⁻ Mg(s)+2OH⁻ −2.69 [13]
Sm²⁺+2e⁻ Sm(s) −2.68 [12][2]
Be₂O₃²⁻+3H₂O+4e⁻ 2Be(s)+6OH⁻ −2.63 [13]
Pm Pm³⁺+e⁻ Pm²⁺ −2.6 [13]
Dy Dy³⁺+e⁻ Dy²⁺ −2.6 [13]
No²⁺+2e⁻ No(s) −2.50 [12]
HfO(OH)₂(s)+H₂O+4e⁻ Hf(s)+4OH⁻ −2.50 [12]
Th(OH)₄(s)+4e⁻ Th(s)+4OH⁻ −2.48 [12]
Md²⁺+2e⁻ Md(s) −2.40 [12]
Tm Tm²⁺+2e⁻ Tm(s) −2.4 [13]
La³⁺+3e⁻ La(s) −2.379 [6]
Y³⁺+3e⁻ Y(s) −2.372 [6]
Mg²⁺+2e⁻ Mg(s) −2.372 [6]
ZrO(OH)₂(s)+H₂O+4e⁻ Zr(s)+4OH⁻ −2.36 [6]
Pr³⁺+3e⁻ Pr(s) −2.353 [12]
Ce³⁺+3e⁻ Ce(s) −2.336 [12]
Er³⁺+3e⁻ Er(s) −2.331 [12]
Ho³⁺+3e⁻ Ho(s) −2.33 [12]
Al(OH)₄⁻+3e⁻ Al(s)+4OH⁻ −2.33
Nd³⁺+3e⁻ Nd(s) −2.323 [13]
Tm Tm³⁺+3e⁻ Tm(s) −2.319 [13]
Al(OH)₃(s)+3e⁻ Al(s)+3OH⁻ −2.31
Sm³⁺+3e⁻ Sm(s) −2.304 [13]
Fm Fm²⁺+2e⁻ Fm −2.3 [13]
Am Am³⁺+e⁻ Am²⁺ −2.3 [13]
Dy Dy³⁺+3e⁻ Dy(s) −2.295 [13]
Lu Lu³⁺+3e⁻ Lu(s) −2.28 [13]
Tb³⁺+3e⁻ Tb(s) −2.28
Gd³⁺+3e⁻ Gd(s) −2.279 [13]
H₂(g)+2e⁻ 2H⁻ −2.25
Es Es²⁺+2e⁻ Es(s) −2.23 [13]
Pm Pm²⁺+2e⁻ Pm(s) −2.2 [13]
Tm Tm³⁺+e⁻ Tm²⁺ −2.2 [13]
Dy Dy²⁺+2e⁻ Dy(s) −2.2 [13]
Ac³⁺+3e⁻ Ac(s) −2.20
Yb Yb³⁺+3e⁻ Yb(s) −2.19 [13]
Be⁺+e⁻ Be(s) −2.12 [11]
Cf²⁺+2e⁻ Cf(s) −2.12 [12]
Nd²⁺+2e⁻ Nd(s) −2.1 [13]
Ho²⁺+2e⁻ Ho(s) −2.1 [13]
Sc³⁺+3e⁻ Sc(s) −2.077 [19]
AlF₆³⁻+3e⁻ Al(s)+6F⁻ −2.069 [13]
Am³⁺+3e⁻ Am(s) −2.048 [12]
Cm Cm³⁺+3e⁻ Cm(s) −2.04 [13]
Pu³⁺+3e⁻ Pu(s) −2.031 [13]
Pr Pr²⁺+2e⁻ Pr(s) −2 [13]
Er²⁺+2e⁻ Er(s) −2 [13]
Eu³⁺+3e⁻ Eu(s) −1.991 [13]
Lr Lr³⁺+3e⁻ Lr −1.96 [13]
Cf³⁺+3e⁻ Cf(s) −1.94 [12]
Ca²⁺+e⁻ Ca⁺ −1.936 [6][12]
Es Es³⁺+3e⁻ Es(s) −1.91 [13]
Pa Pa⁴⁺+e⁻ Pa³⁺ −1.9 [13]
Am²⁺+2e⁻ Am(s) −1.9 [12]
Th⁴⁺+4e⁻ Th(s) −1.899 [13]
Fm³⁺+3e⁻ Fm(s) −1.89 [12]
Np Np³⁺+3e⁻ Np(s) −1.856 [13]
Be²⁺+2e⁻ Be(s) −1.85
H₂PO₂⁻+e⁻ P(s)+2OH⁻ −1.82 [13]
Sr²⁺+2e⁻ Sr(Hg) −1.793 [20]
H₂BO₃⁻+H₂O+3e⁻ B(s)+4OH⁻ −1.79 [21]
ThO₂+4H⁺+4e⁻ Th(s)+2H₂O −1.789 [22]
HfO²⁺+2H⁺+4e⁻ Hf(s)+H₂O −1.724 [23]
HPO₃²⁻+2H₂O+3e⁻ P(s)+5OH⁻ −1.71 [24]
SiO₃²⁻+3H₂O+4e⁻ Si(s)+6OH⁻ −1.697 [24]
𬬻 Rf⁴⁺+4e⁻ Rf(s) −1.67 [25]
U³⁺+3e⁻ U(s) −1.66 [8]
Al³⁺+3e⁻ Al(s) −1.66 [10]
Ti²⁺+2e⁻ Ti(s) −1.63 [10]
Bk²⁺+2e⁻ Bk(s) −1.6 [12]
ZrO₂(s)+4H⁺+4e⁻ Zr(s)+2H₂O −1.553 [6]
Hf⁴⁺+4e⁻ Hf(s) −1.55 [12]
Zr⁴⁺+4e⁻ Zr(s) −1.45 [6]
Ti³⁺+3e⁻ Ti(s) −1.37 [26]
TiO(s)+2H⁺+2e⁻ Ti(s)+H₂O −1.31
C⁴⁺+4e⁻ C −1.3 [27]
Ti₂O₃(s)+2H⁺+2e⁻ 2TiO(s)+H₂O −1.23
Zn(OH)₄²⁻+2e⁻ Zn(s)+4OH⁻ −1.199 [28]
Mn²⁺+2e⁻ Mn(s) −1.185 [28]
Fe(CN)₆⁴⁻+6H⁺+2e⁻ Fe(s)+6HCN(aq) −1.16 [29]
V²⁺+2e⁻ V(s) −1.175 [3]
Te(s)+2e⁻ Te²⁻ −1.143 [3]
Nb³⁺+3e⁻ Nb(s) −1.099
Sn(s)+4H⁺+4e⁻ SnH₄(g) −1.07
In(OH)₃(s)+3e⁻ In(s)+3OH⁻ −0.99 [12]
SiO₂(s)+4H⁺+4e⁻ Si(s)+2H₂O −0.91
B(OH)₃(aq)+3H⁺+3e⁻ B(s)+3H₂O −0.89
Fe(OH)₂(s)+2e⁻ Fe(s)+2OH⁻ −0.89 [29]
Fe₂O₃(s)+3H₂O+2e⁻ 2Fe(OH)₂(s)+2OH⁻ −0.86 [29]
TiO²⁺+2H⁺+4e⁻ Ti(s)+H₂O −0.86
2H₂O+2e⁻ H₂(g)+2OH⁻ −0.8277 [6]
Bi(s)+3H⁺+3e⁻ BiH₃ −0.8 [28]
Zn²⁺+2e⁻ Zn(Hg) −0.7628 [6]
Zn²⁺+2e⁻ Zn(s) −0.7618 [6]
Ta₂O₅(s)+10H⁺+10e⁻ 2Ta(s)+5H₂O −0.75
Cr³⁺+3e⁻ Cr(s) −0.74
Ni(OH)₂(s)+2e⁻ Ni(s)+2OH⁻ −0.72 [30]
Ag₂S(s)+2e⁻ 2Ag(s)+S²⁻(aq) −0.69
金(金氰) Au(CN)₂⁻+e⁻ Au(s)+2CN⁻ −0.60
Ta³⁺+3e⁻ Ta(s) −0.6
PbO(s)+H₂O+2e⁻ Pb(s)+2OH⁻ −0.58
2TiO₂(s)+2H⁺+2e⁻ Ti₂O₃(s)+H₂O −0.56
Ga³⁺+3e⁻ Ga(s) −0.53
U⁴⁺+e⁻ U³⁺ −0.52 [8]
H₃PO₂(aq)+H⁺+e⁻ P([31]+2H₂O −0.508 [6]
H₃PO₃(aq)+2H⁺+2e⁻ H₃PO₂(aq)+H₂O −0.499 [6]
NiO₂(s)+2H₂O+2e⁻ Ni(OH)₂(s)+2OH⁻ −0.49 [32]
H₃PO₃(aq)+3H⁺+3e⁻ P([31]+3H₂O −0.454 [6]
Cu(CN)₂⁻+e⁻ Cu(s)+2CN⁻ −0.44 [33]
Fe²⁺+2e⁻ Fe(s) −0.44 [10]
2CO₂(g)+2H⁺+2e⁻ (HO₂C)₂(aq) −0.43
Cr³⁺+e⁻ Cr²⁺ −0.42
Cd²⁺+2e⁻ Cd(s) −0.40 [10]
SeO₃²⁻+4e⁻+3H₂O Se+6OH⁻ −0.37 [34]
GeO₂(s)+2H⁺+2e⁻ GeO(s)+H₂O −0.37
Cu₂O(s)+H₂O+2e⁻ 2Cu(s)+2OH⁻ −0.360 [6]
PbSO₄(s)+2e⁻ Pb(s)+SO₄²⁻ −0.3588 [6]
PbSO₄(s)+2e⁻ Pb(Hg)+SO₄²⁻ −0.3505 [6]
Eu³⁺+e⁻ Eu²⁺ −0.35 [8]
In³⁺+3e⁻ In(s) −0.34 [3]
Tl⁺+e⁻ Tl(s) −0.34 [3]
NAD(P)⁺+H⁺+2e⁻ NAD(P)H −0.32 [35]
B³⁺+3e⁻ B(s) −0.31
Ge(s)+4H⁺+4e⁻ GeH₄(g) −0.29
Co²⁺+2e⁻ Co(s) −0.28 [6]
H₃PO₄(aq)+2H⁺+2e⁻ H₃PO₃(aq)+H₂O −0.276 [6]
V³⁺+e⁻ V²⁺ −0.26 [10]
Ni²⁺+2e⁻ Ni(s) −0.25
As(s)+3H⁺+3e⁻ AsH₃(g) −0.23 [3]
Ga⁺+e⁻ Ga(s) −0.2 [36]
AgI(s)+e⁻ Ag(s)+I⁻ −0.15224 [28]
MoO₂(s)+4H⁺+4e⁻ Mo(s)+2H₂O −0.15
Si(s)+4H⁺+4e⁻ SiH₄(g) −0.14
Sn²⁺+2e⁻ Sn(s) −0.13
O₂(g)+H⁺+e⁻ HO₂•(aq) −0.13
Pb²⁺+2e⁻ Pb(s) −0.13 [10]
WO₂(s)+4H⁺+4e⁻ W(s)+2H₂O −0.12
P)+3H⁺+3e⁻ PH₃(g) −0.111 [6]
CO₂(g)+2H⁺+2e⁻ HCO₂H(aq) −0.11
Se(s)+2H⁺+2e⁻ H₂Se(g) −0.11
CO₂(g)+2H⁺+2e⁻ CO(g)+H₂O −0.11
Cu(NH₃)₂⁺+e⁻ Cu(s)+2NH₃(aq) −0.1 [37]
SnO(s)+2H⁺+2e⁻ Sn(s)+H₂O −0.10
SnO₂(s)+2H⁺+2e⁻ SnO(s)+H₂O −0.09
WO₃(aq)+6H⁺+6e⁻ W(s)+3H₂O −0.09 [3]
P)+3H⁺+3e⁻ PH₃(g) −0.063 [6]
氢(氘) 2D⁺+2e⁻ D₂(g) −0.044
Fe³⁺+3e⁻ Fe(s) −0.04 [29]
碳(甲酸) HCO₂H(aq)+2H⁺+2e⁻ HCHO(aq)+H₂O −0.03
2H⁺+2e⁻ H₂(g) ≡0
AgBr(s)+e⁻ Ag(s)+Br⁻ +0.07133 [28]
S₄O₆²⁻+2e⁻ 2S₂O₃²⁻ +0.08
Fe₃O₄(s)+8H⁺+8e⁻ 3Fe(s)+4H₂O +0.085 [9][10]
N₂(g)+2H₂O+6H⁺+6e⁻ 2NH₄OH(aq) +0.092
HgO(s)+H₂O+2e⁻ Hg(l)+2OH⁻ +0.0977
Cu(NH₃)₄²⁺+e⁻ Cu(NH₃)₂⁺+2NH₃ +0.10 [3]
Ru(NH₃)₆³⁺+e⁻ Ru(NH₃)₆²⁺ +0.10 [8]
氮(肼) N₂H₄(aq)+4H₂O+2e⁻ 2NH₄⁺+4OH⁻ +0.11 [7]
H₂MoO₄(aq)+6H⁺+6e⁻ Mo(s)+4H₂O +0.11
Ge⁴⁺+4e⁻ Ge(s) +0.12
C(s)+4H⁺+4e⁻ CH₄(g) +0.13 [3]
HCHO(aq)+2H⁺+2e⁻ CH₃OH(aq) +0.13
S(s)+2H⁺+2e⁻ H₂S(g) +0.14
Sn⁴⁺+2e⁻ Sn²⁺ +0.15
Cu²⁺+e⁻ Cu⁺ +0.159 [3]
HSO₄⁻+3H⁺+2e⁻ SO₂(aq)+2H₂O +0.16
UO₂²⁺+e⁻ UO₂⁺ +0.163 [8]
SO₄²⁻+4H⁺+2e⁻ SO₂(aq)+2H₂O +0.17
TiO²⁺+2H⁺+e⁻ Ti³⁺+H₂O +0.19
Bi³⁺+2e⁻ Bi⁺ +0.2
SbO⁺+2H⁺+3e⁻ Sb(s)+H₂O +0.20
CO₂(g)+4H⁺+4e⁻ C(s)+2H₂O +0.205
3Fe₂O₃(s)+2H⁺+2e⁻ 2Fe₃O₄(s)+H₂O +0.22 :p.100
AgCl(s)+e⁻ Ag(s)+Cl⁻ +0.22233 [28]
H₃AsO₃(aq)+3H⁺+3e⁻ As(s)+3H₂O +0.24
Ru³⁺(aq)+e⁻ Ru²⁺(aq) +0.249 [38]
GeO(s)+2H⁺+2e⁻ Ge(s)+H₂O +0.26
UO₂⁺+4H⁺+e⁻ U⁴⁺+2H₂O +0.273 [8]
At₂+e⁻ 2At⁻ +0.3 [12]
Re³⁺+3e⁻ Re(s) +0.300
Bi³⁺+3e⁻ Bi(s) +0.32
碳(氰) 2HCNO+2H⁺+2e⁻ (CN)₂+2H₂O +0.330 [39]
VO²⁺+2H⁺+e⁻ V³⁺+H₂O +0.34
Cu²⁺+2e⁻ Cu(s) +0.340 [3]
At⁺+2e⁻ At⁻ +0.36 [40]
铁(铁氰) Fe(CN)₆³⁻+e⁻ Fe(CN)₆⁴⁻ +0.36
碳(氰) (CN)₂+2H⁺+2e⁻ 2HCN +0.373 [41]
Tc²⁺+2e⁻ Tc(s) +0.40 [12]
O₂(g)+2H₂O+4e⁻ 4OH⁻(aq) +0.40 [10]
H₂MoO₄+6H⁺+3e⁻ Mo³⁺+2H₂O +0.43
Ru²⁺+2e⁻ Ru(s) +0.455 [12]
Bi⁺+e⁻ Bi(s) +0.50
CH₃OH(aq)+2H⁺+2e⁻ CH₄(g)+H₂O +0.50
SO₂(aq)+4H⁺+4e⁻ S(s)+2H₂O +0.50
Cu⁺+e⁻ Cu(s) +0.520 [3]
CO(g)+2H⁺+2e⁻ C(s)+H₂O +0.52
I₃⁻+2e⁻ 3I⁻ +0.53 [10]
I₂(s)+2e⁻ 2I⁻ +0.54 [10]
金(金碘) AuI₄⁻+3e⁻ Au(s)+4I⁻ +0.56
H₃AsO₄(aq)+2H⁺+2e⁻ H₃AsO₃(aq)+H₂O +0.56
金(金碘) AuI₂⁻+e⁻ Au(s)+2I⁻ +0.58
MnO₄⁻+2H₂O+3e⁻ MnO₂(s)+4OH⁻ +0.59
Rh⁺+e⁻ Rh(s) +0.600 [12]
S₂O₃²⁻+6H⁺+4e⁻ 2S(s)+3H₂O +0.60
铁(二茂铁) Fc+e⁻ Fc(s) +0.641 [42]
CH₃CO₂Ag+e⁻ Ag+CH₃CO₂⁻ +0.643 [12]
H₂MoO₄(aq)+2H⁺+2e⁻ MoO₂(s)+2H₂O +0.65
碳(苯醌)  +2H⁺+2e⁻   +0.6992 [28]
O₂(g)+2H⁺+2e⁻ H₂O₂(aq) +0.70
Tl³⁺+3e⁻ Tl(s) +0.72
铂(铂氯) PtCl₆²⁻+2e⁻ PtCl₄²⁻+2Cl⁻ +0.726 [8]
Fe₂O₃(s)+6H⁺+2e⁻ 2Fe²⁺+3H₂O +0.728 :p.100
H₂SeO₃(aq)+4H⁺+4e⁻ Se(s)+3H₂O +0.74
AtO⁺+2H⁺+2e⁻ At⁺+H₂O +0.74 [43]
Rh³⁺+3e⁻ Rh(s) +0.758 [12]
铂(铂氯) PtCl₄²⁻+2e⁻ Pt(s)+4Cl⁻ +0.758 [8]
Po⁴⁺+4e⁻ Po +0.76 [44]
(SCN)₂+2e⁻ 2SCN⁻ +0.77 [44]
Fe³⁺+e⁻ Fe²⁺ +0.77
Ag⁺+e⁻ Ag(s) +0.7996 [6]
Hg₂²⁺+2e⁻ 2Hg(l) +0.80
氮(硝) NO₃⁻(aq)+2H⁺+e⁻ NO₂(g)+H₂O +0.80
FeO₄²⁻+5H₂O+6e⁻ Fe₂O₃(s)+10OH⁻ +0.81 [29]
金(金溴) AuBr₄⁻+3e⁻ Au(s)+4Br⁻ +0.85
Hg²⁺+2e⁻ Hg(l) +0.85
IrCl₆²⁻+e⁻ IrCl₆³⁻ +0.87 [45]
MnO₄⁻+H⁺+e⁻ HMnO₄⁻ +0.90
Po⁴⁺+2e⁻ Po²⁺ +0.9 [46]
2Hg²⁺+2e⁻ Hg₂²⁺ +0.91 [3]
Pd²⁺+2e⁻ Pd(s) +0.915 [8]
金(金氯) AuCl₄⁻+3e⁻ Au(s)+4Cl⁻ +0.93
MnO₂(s)+4H⁺+e⁻ Mn³⁺+2H₂O +0.95
氮(硝) NO₃⁻(aq)+4H⁺+3e⁻ NO(g)+2H₂O(l) +0.958 [47]
金(金溴) AuBr₂⁻+e⁻ Au(s)+2Br⁻ +0.96
Fe₃O₄(s)+8H⁺+2e⁻ 3Fe²⁺+4H₂O +0.98 :p.100
HXeO₆³⁻+2H₂O+2e⁻ HXeO₄⁻+4OH⁻ +0.99 [48]
氮(硝) HNO₂+H⁺+e⁻ NO(g)+H₂O +0.996
VO₂⁺(aq)+2H⁺+e⁻ VO²⁺(aq)+H₂O +1 [49]
HAtO+H⁺+e⁻ At+H₂O +1.0 [50]
H₆TeO₆(aq)+2H⁺+2e⁻ TeO₂(s)+4H₂O +1.02 [51]
Br₂(l)+2e⁻ 2Br⁻ +1.065
Br₂(aq)+2e⁻ 2Br⁻ +1.087 [10]
氮(硝) NO₂(g)+H⁺+e⁻ HNO₂ +1.093
Cu²⁺+2CN⁻+e⁻ Cu(CN)₂⁻ +1.12 [52]
RuO₂+4H⁺+2e⁻ Ru²⁺(aq)+2H₂O +1.120 [53]
IO₃⁻+5H⁺+4e⁻ HIO(aq)+2H₂O +1.13
金(金氯) AuCl₂⁻+e⁻ Au(s)+2Cl⁻ +1.15
HSeO₄⁻+3H⁺+2e⁻ H₂SeO₃(aq)+H₂O +1.15
Ir³⁺+3e⁻ Ir(s) +1.156 [12]
Ag₂O(s)+2H⁺+2e⁻ 2Ag(s)+H₂O +1.17
ClO₃⁻+2H⁺+e⁻ ClO₂(g)+H₂O +1.18
HXeO₆³⁻+5H₂O+8e⁻ Xe(g)+11OH⁻ +1.18 [48]
Pt²⁺+2e⁻ Pt(s) +1.188 [8]
ClO₂(g)+H⁺+e⁻ HClO₂(aq) +1.19
2IO₃⁻+12H⁺+10e⁻ I₂(s)+6H₂O +1.20
ClO₄⁻+2H⁺+2e⁻ ClO₃⁻+H₂O +1.20
O₂(g)+4H⁺+4e⁻ 2H₂O +1.229 [10]
MnO₂(s)+4H⁺+2e⁻ Mn²⁺+2H₂O +1.23
Ru(bipy)₃³⁺+e⁻ Ru(bipy)₃²⁺ +1.24 [54]
HXeO₄⁻+3H₂O+6e⁻ Xe(g)+7OH⁻ +1.24 [48]
Tl³⁺+2e⁻ Tl⁺ +1.25
Cr₂O₇²⁻+14H⁺+6e⁻ 2Cr³⁺+7H₂O +1.33
Cl₂(g)+2e⁻ 2Cl⁻ +1.36 [10]
RuO₄⁻(aq)+8H⁺+5e⁻ Ru²⁺(aq)+4H₂O +1.368 [55]
RuO₄+4H⁺+4e⁻ RuO₂+2H₂O +1.387 [55]
CoO₂(s)+4H⁺+e⁻ Co³⁺+2H₂O +1.42
氮(肼) 2NH₃OH⁺+H⁺+2e⁻ N₂H₅⁺+2H₂O +1.42 [7]
2HIO(aq)+2H⁺+2e⁻ I₂(s)+2H₂O +1.44
Ce⁴⁺+e⁻ Ce³⁺ +1.44
BrO₃⁻+5H⁺+4e⁻ HBrO(aq)+2H₂O +1.45
β-PbO₂(s)+4H⁺+2e⁻ Pb²⁺+2H₂O +1.460 [3]
α-PbO₂(s)+4H⁺+2e⁻ Pb²⁺+2H₂O +1.468 [3]
2BrO₃⁻+12H⁺+10e⁻ Br₂(l)+6H₂O +1.48
2ClO₃⁻+12H⁺+10e⁻ Cl₂(g)+6H₂O +1.49
HClO(aq)+H⁺+2e⁻ Cl⁻(aq)+H₂O +1.49 [56]
氧(超氧) HO₂+H⁺+e⁻ H₂O₂ +1.495 [12]
HAtO₃+4H⁺+4e⁻ HAtO+2H₂O +1.5 [57]
MnO₄⁻+8H⁺+5e⁻ Mn²⁺+4H₂O +1.51
HO₂•+H⁺+e⁻ H₂O₂(aq) +1.51
Au³⁺+3e⁻ Au(s) +1.52
RuO₄²⁻(aq)+8H⁺+4e⁻ Ru²⁺(aq)+4H₂O +1.563 [58]
NiO₂(s)+4H⁺+2e⁻ Ni²⁺+2OH⁻ +1.59
2HClO(aq)+2H⁺+2e⁻ Cl₂(g)+2H₂O +1.63
IO₄⁻+2H⁺+2e⁻ IO₃⁻+H₂O +1.64 [59]
Ag₂O₃(s)+6H⁺+4e⁻ 2Ag⁺+3H₂O +1.67
HClO₂(aq)+2H⁺+2e⁻ HClO(aq)+H₂O +1.67
Pb⁴⁺+2e⁻ Pb²⁺ +1.69 [3]
MnO₄⁻+4H⁺+3e⁻ MnO₂(s)+2H₂O +1.70
AgO(s)+2H⁺+e⁻ Ag⁺+H₂O +1.77
氧(过氧) H₂O₂(aq)+2H⁺+2e⁻ 2H₂O +1.776
Co³⁺+e⁻ Co²⁺ +1.82
Au⁺+e⁻ Au(s) +1.83 [3]
BrO₄⁻+2H⁺+2e⁻ BrO₃⁻+H₂O +1.85
Ag²⁺+e⁻ Ag⁺ +1.98 [3]
氧(过氧) S₂O₈²⁻+2e⁻ 2SO₄²⁻ +2.07
O₃(g)+2H⁺+2e⁻ O₂(g)+H₂O +2.075 [8]
HMnO₄⁻+3H⁺+2e⁻ MnO₂(s)+2H₂O +2.09
XeO₃(aq)+6H⁺+6e⁻ Xe(g)+3H₂O +2.12 [48]
氧(氟氧) OF₂+2H⁺+4e⁻ 2F⁻+H₂O +2.153 [12]
H₄XeO₆(aq)+8H⁺+8e⁻ Xe(g)+6H₂O +2.18 [48]
FeO₄²⁻+8H⁺+3e⁻ Fe³⁺+4H₂O +2.20 [60]
XeF₂(aq)+2H⁺+2e⁻ Xe(g)+2HF(aq) +2.32 [48]
H₄XeO₆(aq)+2H⁺+2e⁻ XeO₃(aq)+H₂O +2.42 [48]
F₂(g)+2e⁻ 2F⁻ +2.87 [3][10]
Cm Cm⁴⁺+e⁻ Cm³⁺ +3.0 [61]
F₂(g)+2H⁺+2e⁻ 2HF(aq) +3.05 [3]
Tb⁴⁺e⁻ Tb³⁺ +3.05 [12]
Pr Pr⁴⁺+e⁻ Pr³⁺ +3.2 [62]
KrF₂(aq)+2e⁻ Kr(g)+2F⁻(aq) +3.27 [63]

参见

编辑

参考资料

编辑
  1. ^ R.W. Bosch, D.Feron, and J.P. Celis, "Electrochemistry in Light Water Reactors", CRC Press, 2007.
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 Milazzo, G., Caroli, S., and Sharma, V. K. (1978). Tables of Standard Electrode Potentials (Wiley, Chichester).
  3. ^ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  4. ^ 4.0 4.1 4.2 4.3 Bratsch, S. G. (1989). Journal of Physical Chemistry Reference Data Vol. 18, pp. 1–21. 引用错误:带有name属性“Bra”的<ref>标签用不同内容定义了多次
  5. ^ 5.0 5.1 Vanýsek, Petr (2006). "Electrochemical Series," in Handbook of Chemistry and Physics: 87th Edition页面存档备份,存于互联网档案馆) (Chemical Rubber Company). 引用错误:带有name属性“Van”的<ref>标签用不同内容定义了多次
  6. ^ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 Vanýsek, Petr (2007). “Electrochemical Series”页面存档备份,存于互联网档案馆), in Handbook of Chemistry and Physics: 88th Edition页面存档备份,存于互联网档案馆) (Chemical Rubber Company). 引用错误:带有name属性“van88”的<ref>标签用不同内容定义了多次
  7. ^ 7.0 7.1 7.2 7.3 7.4 Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements 2nd. Oxford:Butterworth-Heinemann. 1997. ISBN 0-7506-3365-4. 
  8. ^ 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 Bard, A.J., Faulkner, L.R.(2001). Electrochemical Methods. Fundamentals and Applications, 2nd edition (John Wiley and Sons Inc).
  9. ^ 9.0 9.1 Marcel Pourbaix (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE International, Houston, Texas; Cebelcor, Brussels).
  10. ^ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 Peter Atkins (1997). Physical Chemistry, 6th edition (W.H. Freeman and Company, New York).
  11. ^ 11.0 11.1 11.2 Ca Sr Ba一价[11]与两价间的标准电极电势正好有规律关系,因此可以估计近似值
  12. ^ 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 12.18 12.19 12.20 12.21 12.22 12.23 12.24 12.25 12.26 12.27 12.28 12.29 12.30 12.31 12.32 12.33 12.34 Standard Redox Potential Table. [2012-01-14]. (原始内容存档于2021-02-06). 
  13. ^ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 13.24 13.25 13.26 13.27 13.28 13.29 13.30 13.31 13.32 13.33 13.34 13.35 13.36 Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  14. ^ Greenwood and Earnshaw, p. 1263
  15. ^ Standard Redox Potential Table. [2012-01-14]. (原始内容存档于2021-02-06). 
  16. ^ Standard Redox Potential Table. [2012-01-14]. (原始内容存档于2021-02-06). 
  17. ^ Vanýsek, Petr (2007). “Electrochemical Series”页面存档备份,存于互联网档案馆), in Handbook of Chemistry and Physics: 88th Edition页面存档备份,存于互联网档案馆) (Chemical Rubber Company).
  18. ^ 引用错误:没有为名为van92的参考文献提供内容
  19. ^ David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com 互联网档案馆存档,存档日期2017-07-24., CRC Press, Boca Raton, FL, 2005.
  20. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  21. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  22. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  23. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  24. ^ 24.0 24.1 Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  25. ^ Ti Zr Hf 的标准电极电势变化较规律,因此可估计 Rf的标准电极电势
  26. ^ Gordon Aylward & Tristan Findlay (2008). "SI Chemical Data", 6th edition (John Wiley & Sons, Australia), ISBN 9780470816387.
  27. ^ List of carbon reactivity series (PDF). web.anl.gov. [2013-06-06]. (原始内容存档 (PDF)于2017-04-28).  可知碳之活性,九年义务教育课本《化学》九年级第一学期,上海教育出版社,2007年8月第2版,ISBN 978-7-5320-8481-4 第109、112页、MSDS of carbon. [2013-06-06]. (原始内容存档于2016-03-05). 根据碳的相关安全资料,可之其活性范围,推之
  28. ^ 28.0 28.1 28.2 28.3 28.4 28.5 28.6 Vanýsek, Petr (2007). “Electrochemical Series”, in Handbook of Chemistry and Physics: 88th Edition (Chemical Rubber Company).
  29. ^ 29.0 29.1 29.2 29.3 29.4 WebElements Periodic Table of the Elements | Iron | compounds information. [2012-01-14]. (原始内容存档于2021-01-18). 
  30. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  31. ^ 31.0 31.1 由−0.454和(2×−0.499+−0.508)÷3=−0.502推算出。
  32. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  33. ^ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  34. ^ “Glyoxal Bisulfite”页面存档备份,存于互联网档案馆), Organic Syntheses, Collected Volume 3, p.438 (1955).
  35. ^ Huang, Haiyan; Shuning Wang; Johanna Moll; Rudolf K. Thauer. Electron Bifurcation Involved in the Energy Metabolism of the Acetogenic Bacterium Moorella thermoacetica Growing on Glucose or H2 plus CO2. Journal of Bacteriology. 2012-07-15, 194 (14): 3689–3699 [2013-09-10]. ISSN 0021-9193. doi:10.1128/JB.00385-12. (原始内容存档于2020-12-13). 
  36. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  37. ^ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  38. ^ Greenwood and Earnshaw, p. 1077
  39. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  40. ^ {{cite journal | last=Champion | first=J. | last2=Alliot | first2=C. | last3=Renault | first3=E. | last4=Mokili | first4=B. M. | last5=Chérel | first5=M. | last6=Galland | first6=N. | last7=Montavon | first7=G. | title=Astatine Standard Redox Potentials and Speciation in Acidic Medium | journal=The Journal of Physical Chemistry A | publisher=American Chemical Society (ACS) | volume=114 | issue=1 | date=2009-12-16 | issn=1089-5639 | doi=10.1021/jp9077008 | pages=576–58₂]]
  41. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  42. ^ Connelly, Neil G.; Geiger, William E. Chemical Redox Agents for Organometallic Chemistry. Chemical Reviews. 1 January 1996, 96 (2): 877–910. PMID 11848774. doi:10.1021/cr940053x. 
  43. ^ {{cite journal | last=Champion | first=J. | last2=Alliot | first2=C. | last3=Renault | first3=E. | last4=Mokili | first4=B. M. | last5=Chérel | first5=M. | last6=Galland | first6=N. | last7=Montavon | first7=G. | title=Astatine Standard Redox Potentials and Speciation in Acidic Medium | journal=The Journal of Physical Chemistry A | publisher=American Chemical Society (ACS) | volume=114 | issue=1 | date=2009-12-16 | issn=1089-5639 | doi=10.1021/jp9077008 | pages=576–58₂]]
  44. ^ 44.0 44.1 Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  45. ^ {{cite book |last= Atkins |first=Peter |title= Inorganic Chemistry |edition=5th |year=2010 |publisher=W. H. Freeman |isbn= 978-1-42-921820-7 |pages=15₃]]
  46. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  47. ^ Peter Atkins (1997). Physical Chemistry, 6th edition (W.H. Freeman and Company, New York).
  48. ^ 48.0 48.1 48.2 48.3 48.4 48.5 48.6 WebElements Periodic Table of the Elements | Xenon | compounds information. [2012-01-14]. (原始内容存档于2021-03-22). 
  49. ^ Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred, Advanced Inorganic Chemistry 6th, New York: Wiley-Interscience, 1999, ISBN 0-471-19957-5 
  50. ^ Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich. Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. 1970: 237. ISBN 0-250-39923-7. OCLC 186926. 
  51. ^ Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred, Advanced Inorganic Chemistry 6th, New York: Wiley-Interscience, 1999, ISBN 0-471-19957-5 
  52. ^ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  53. ^ Greenwood and Earnshaw, p. 1077
  54. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  55. ^ 55.0 55.1 Greenwood and Earnshaw, p. 1077
  56. ^ Lide, David R. (编), CRC Handbook of Chemistry and Physics 87th, Boca Raton, FL: CRC Press, 2006, ISBN 0-8493-0487-3 
  57. ^ Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich. Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. 1970: 237. ISBN 0-250-39923-7. OCLC 186926. 
  58. ^ Greenwood and Earnshaw, p. 1077
  59. ^ Appelman, Evan H. Nonexistent compounds. Two case histories. Accounts of Chemical Research (American Chemical Society (ACS)). 1973-04-01, 6 (4): 113–117. ISSN 0001-4842. doi:10.1021/ar50064a001. 
  60. ^ Redox Reactions, Western Oregon University website. [2012-01-15]. (原始内容存档于2019-08-30). 
  61. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  62. ^ Petr Vanysek. Electrochemical series (PDF). depa.fquim.unam.mx. (原始内容存档 (PDF)于2022-10-16). 
  63. ^ Leszczyński, P.J.; Grochala, W. Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds (PDF). Acta Chim. Slov. 2013, 60 (3): 455–470. PMID 24169699. (原始内容存档 (PDF)于2022-10-09). 

外部链接

编辑