悬链线
悬链线(Catenary)是一种常用曲线,物理上用于描绘质量均匀分布而不可延伸的长链悬挂在两支点间,因均匀引力作用下而形成向下弯曲之曲线,因此而得名。
虽然弯曲的形状看似二次方的抛物线,但是1638年在伽利略的《Two New Sciences》中证明因为绳子的张力会随著吊挂重量的不同,在底端为最小、愈高的地方愈大,如此一来,它所形成的形状就不是抛物线。
随后在1670年胡克根据力学推导出悬链线的数学特性。1691年莱布尼兹、惠更斯、约翰·白努利近一步推导出数学模型。
它的公式为:
- 或者简单地表示为
其中cosh是双曲余弦函数, 是一个由绳子本身性质和悬挂方式决定的常数,轴为其准线。具体来说,,其中是重力加速度,是线密度(假设绳子密度均匀),而是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
其中L是绳子总长的一半,d是端点距离的一半。
方程的推导
编辑表达式的证明
如右图,设最低点 处受水平向左的拉力 ,右悬挂点处表示为 点,在 弧线区段任意取一段设为 点,则 受一个斜向上的拉力 ,设 和水平方向夹角为 ,绳子的质量为 ,受力分析有:
;
,
,
, 其中 是右段 绳子的长度, 是绳子线重量密度, 为切线方向,记 , 代入得微分方程 ;
利用弧长公式 ;
所以 ;
再把 代入微分方程得
对于 设 微分处理
得
其中 ;
对(2)分离常量求积分
得 ,即
其中 为反双曲函数;
当 时, ;
带入得 ;
整理得
工程中的应用
编辑悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:
还有以下几个公式,可能也有用:
其中 是曲线中某点到0点的链索长度, 是该点的正切角, 是0点处的水平张力, 是链索的单位重量。利用上述公式即能计算出任意点的张力。