高熵合金(英語:High-entropy alloysHEAs)簡稱HEA,通常是由五種或五種以上等量或相對比例金屬形成的新型合金。名為「高熵合金」是因為當混合物中存在大量元素混合時的熵增加實質上更高,並且比例更接近相等。[2]

面心立方結構CoCrFeMnNi原子結構[1]

由於高熵合金可能具有許多理想的性質,因此在材料科學及工程上相當受到重視[3]。相對於以往的典型金屬合金,合金主要的金屬成份可能只有一至兩種。例如會以鐵為基礎,再加入一些微量元素(等)來提昇其特性,但因此所得的還是以鐵為主的合金[3],其他元素比例實際相當低。過往的概念中,若合金中加的金屬種類越多,會使其材質脆化,但高熵合金和以往的合金不同,有多種金屬卻不會脆化,是一種新的材料[1][3][4]

研究發現有些高熵合金的比強度比傳統合金好很多,而且抗斷裂能力抗拉強度、抗腐蝕及抗氧化特性都比傳統的合金要好。高熵合金在2004年以前就已問世,但在2010年代才有許多相關的研究[3][5][6][7][8][9]

發展

編輯

儘管早在1981年[10]、1996年[11]、以及整個1980年代就考究了理論上可以存在高熵合金。但製造出這些特殊合金,還要到2004年。

據說葉均蔚博士是在1995年駕車穿越新竹鄉村時,想出了實際製造高熵合金方法。

高熵合金潛在應用包括用於潛艇、太空飛行器、核武器、核反應爐[12]、噴氣式飛機、遠程高超音速導彈等等。[13][14]

葉均蔚博士的論文發表幾個月後,布賴恩·康托爾英語Brian Cantor、I. T. H. Chang、P. Knight、A. J. B. Vincent提交了關於高熵合金的獨立論文。

葉均蔚也是第一個提出「高熵合金」(英語:High-entropy alloys)一詞的人,他將高構型熵歸因於穩定固溶體相機制。[15]

儘管布賴恩·康托爾英語Brian Cantor直到2004年葉均蔚論文發表幾個月後才發表論文,康托爾其實早在1970年代末1980年代初就完成了該領域的首項工作。康托爾英語Brian Cantor由於不知道葉均蔚的工作,康托爾英語Brian Cantor更喜歡稱「高熵合金」為「多組分合金多元合金」(英語:multicomponent alloys)。康托爾英語Brian Cantor開發了高熵合金FeCrMnNiCo合金,類似的衍生物也被稱為康托爾合金。[16]

在將高熵合金和多組分系統歸類為單獨一類材料之前,核科學家已經研究了一種現在可以歸類為高熵合金的系統:在核燃料晶界和裂變氣泡處的Mo-Pd-Rh-Ru-Tc粒子。[17]醫療行業對了解這些「五金屬粒子」特別感興趣,因為鍀-99m是一種重要醫學成像同位素。

定義

編輯

沒有普遍認可的HEA定義。最初將HEA定義為含有至少5種元素且原子百分比5到35的合金。[15]然而後來的研究表明,這個定義還可以擴展。建議只有形成沒有金屬間相的固溶體的合金才應該被認為是真正的高熵合金,因為有序相的形成會降低系統的熵。[18]一些作者將四組分合金也描述為高熵合金[19]也有建議只有2到4種元素合金滿足HEA要求,也算高熵合金[20]理想氣體常數1到1.5之間的混合熵也算[21]中熵合金[20]

合成

編輯

使用現有技術截至2018年 (2018-Missing required parameter 1=month!)難以製造高熵合金,並且通常需要昂貴的材料和特殊的加工技術。[22]

高熵合金主要是使用依賴於金屬相方法生產——如果金屬在液態、固態、氣態下合成。

增材製造(立體列印)[27][12]可產出具不同微觀結構的合金,潛在地增加強度(1.3吉帕斯卡)、增加延展性[28]

其他技術包括熱噴塗雷射熔覆英語Cladding (metalworking)電鍍[23][29]

例子

編輯

高熵合金薄膜例子:

合金 相態 硬度(吉帕斯卡 相關模數(吉帕斯卡 參考
CoCrFeMnNi FCC 5.71 Er = 172.84 [30]
CoCrFeMnNiAl1.3 BCC 8.74 Er = 167.19 [30]
Al0.3CoCrFeNi FCC + BCC 11.09 E = 186.01 [31]
CrCoCuFeNi FCC + BCC 15 E = 181 [32]
CoCrFeMnNiTi0.2 FCC 8.61 Er = 157.81 [33]
CoCrFeMnNiTi0.8 無定形 8.99 Er = 151.42 [33]
CoCrFeMnNiV0.07 FCC 7.99 E = 206.4 [34]
CoCrFeMnNiV1.1 無定形 8.69 E = 144.6 [34]
(CoCrFeMnNi)99.5Mo0.5 FCC 4.62 Er = 157.76 [35]
(CoCrFeMnNi)85.4Mo14.6 無定形 8.77 Er = 169.17 [35]
(CoCrFeMnNi)92.8Nb7.2 無定形 8.1 Er ~105 [36]
TiZrNbHfTa FCC 5.4 [37]
FeCoNiCrCuAlMn FCC + BCC 4.2 [38]
FeCoNiCrCuAl0.5 FCC 4.4 [38]
AlCrMnMoNiZr 無定形 7.2 E = 172 [39]
AlCrMoTaTiZr 無定形 11.2 E = 193 [40]
AlCrTiTaZr 無定形 9.3 E = 140 [41]
AlCrMoNbZr BCC + 無定形 11.8 [42]
AlCrNbSiTiV 無定形 10.4 E = 177 [43]
AlCrSiTiZr 無定形 11.5 E ~206 [44]
CrNbSiTaZr 無定形 20.12 [45]
CrNbSiTiZr 無定形 9.6 E = 179.7 [46]
AlFeCrNiMo BCC 4.98 [47]
CuMoTaWV BCC 19 E = 259 [48]
TiVCrZrHf 無定形 8.3 E = 104.7 [49]
ZrTaNbTiW 無定形 4.7 E = 120 [50]
TiVCrAlZr 無定形 8.2 E = 128.9 [51]
FeCoNiCuVZrAl 無定形 8.6 E = 153 [52]
合金 RN (%) 相態 硬度(吉帕斯卡 相關模數(吉帕斯卡 參考
(FeCoNiCuVZrAl)N 30 無定形 12 E = 166 [52]
(TiZrNbHfTa)N 25 FCC 32.9 [37]
(TiVCrAlZr)N 50 FCC 11 E = 151 [51]
(AlCrTaTiZr)N 14 FCC 32 E = 368 [41]
(FeCoNiCrCuAl0.5)N 33.3 無定形 10.4 [38]
(FeCoNiCrCuAlMn)N 23.1 無定形 11.8 [38]
(AlCrMnMoNiZr)N 50 FCC 11.9 E = 202 [39]
(TiVCrZrHf)N 3.85 FCC 23.8 E = 267.3 [49]
(NbTiAlSiW)N 16.67 無定形 13.6 E = 154.4 [53]
(NbTiAlSi)N 16.67 FCC 20.5 E = 206.8
(AlCrNbSiTiV)N 5 FCC 35 E ~ 337 [43]
28 FCC 41 E = 360
(AlCrTaTiZr)N 50 FCC 36 E = 360 [54]
(Al23.1Cr30.8Nb7.7Si7.7Ti30.7)N50 FCC 36.1 E ~ 430 [55]
(Al29.1Cr30.8Nb11.2Si7.7Ti21.2)N50 FCC 36.7 E ~ 380
(AlCrSiTiZr)N 5 無定形 17 E ~ 232 [44]
30 FCC 16 E ~ 232
(AlCrMoTaTiZr)N 40 FCC 40.2 E = 420 [40]
(AlCrTaTiZr)N 50 FCC 35 E = 350 [56]
(CrTaTiVZr)N 20 FCC 34.3 E ~ 268 [57]
(CrNbTiAlV)N 67.86 FCC 35.3 E = 353.7 [58]
(HfNbTiVZr)N 33.33 FCC 7.6 E = 270 [59]

參考

編輯
  1. ^ 1.0 1.1 Wang, Shaoqing. Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy. Entropy. 13 December 2013, 15 (12): 5536–5548 [2016-10-20]. Bibcode:2013Entrp..15.5536W. doi:10.3390/e15125536. (原始內容存檔於2016-04-21).  HTML full text article available
  2. ^ Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: challenges and prospects. Materials Today. July 2016, 19 (6): 349–362. doi:10.1016/j.mattod.2015.11.026 . 
  3. ^ 3.0 3.1 3.2 3.3 Tsai, Ming-Hung; Yeh, Jien-Wei. High-Entropy Alloys: A Critical Review. Materials Research Letters. 30 April 2014, 2 (3): 107–123. doi:10.1080/21663831.2014.912690.  Free PDF download.
  4. ^ 【央廣RTI】「高熵合金」打破多元素合金易脆迷思. [2016-10-21]. (原始內容存檔於2016-10-21). 
  5. ^ Lavine, Marc S. A metal alloy that is stronger when cold. Science. 2014, 345: 1131 [9 January 2015]. Bibcode:2014Sci...345Q1131L. doi:10.1126/science.345.6201.1131-b. (原始內容存檔於2015-09-24). 
  6. ^ Shipman, Matt. New 'high-entropy' alloy is as light as aluminum, as strong as titanium alloys. Phys.org. 10 December 2014 [9 January 2015]. (原始內容存檔於2019-04-19). 
  7. ^ Youssef, Khaled M.; Zaddach, Alexander J.; Niu, Changning; Irving, Douglas L.; Koch, Carl C. A Novel Low-Density, High-Hardness, High-entropy Alloy... (Free PDF download). Materials Research Letters. 9 December 2014: 1. doi:10.1080/21663831.2014.985855. 
  8. ^ Yarris, Lyn. A metallic alloy that is tough and ductile at cryogenic temperatures. Berkeley Lab News Center (University of California, Berkeley). 4 September 2014 [9 January 2015]. (原始內容存檔於2016-04-07). 
  9. ^ Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications (Free PDF download). Science (AAAS). 5 September 2014, 345 (6201): 1153–1158 [9 January 2015]. Bibcode:2014Sci...345.1153G. PMID 25190791. doi:10.1126/science.1254581. (原始內容存檔 (PDF)於2017-01-27). 
  10. ^ Vincent AJB; Cantor B: part II thesis, University of Sussex (1981).
  11. ^ Huang KH, Yeh JW. A study on multicomponent alloy systems containing equal-mole elements [M.S. thesis]. Hsinchu: National Tsing Hua University; 1996.
  12. ^ 12.0 12.1 Sonal, Sonal; Lee, Jonghyun. Recent Advances in Additive Manufacturing of High Entropy Alloys and Their Nuclear and Wear-Resistant Applications. Metals. December 2021, 11 (12): 1980. doi:10.3390/met11121980 . 
  13. ^ Wei-han, Chen. Taiwanese researcher gets special 'Nature' coverage - Taipei Times. The Taipei Times. 10 June 2016 [2022-09-03]. (原始內容存檔於2022-04-07). 
  14. ^ Yeh, Jien Wei; Chen, Yu Liang; Lin, Su Jien; Chen, Swe Kai. High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum. November 2007, 560: 1–9. S2CID 137011733. doi:10.4028/www.scientific.net/MSF.560.1. 
  15. ^ 15.0 15.1 Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. May 2004, 6 (5): 299–303. S2CID 137380231. doi:10.1002/adem.200300567. 
  16. ^ Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. July 2004,. 375-377: 213–218. doi:10.1016/j.msea.2003.10.257. 
  17. ^ Middleburgh, S. C.; King, D. M.; Lumpkin, G. R. Atomic scale modelling of hexagonal structured metallic fission product alloys. Royal Society Open Science. April 2015, 2 (4): 140292. Bibcode:2015RSOS....2n0292M. PMC 4448871 . PMID 26064629. doi:10.1098/rsos.140292. 
  18. ^ Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia. April 2013, 61 (7): 2628–2638 [2022-09-03]. Bibcode:2013AcMat..61.2628O. doi:10.1016/j.actamat.2013.01.042. (原始內容存檔於2022-09-03). 
  19. ^ Zou, Yu; Maiti, Soumyadipta; Steurer, Walter; Spolenak, Ralph. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Materialia. February 2014, 65: 85–97. Bibcode:2014AcMat..65...85Z. doi:10.1016/j.actamat.2013.11.049. 
  20. ^ 20.0 20.1 Gali, A.; George, E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics. August 2013, 39: 74–78 [2022-09-03]. doi:10.1016/j.intermet.2013.03.018. (原始內容存檔於2022-09-03). 
  21. ^ Miracle, Daniel; Miller, Jonathan; Senkov, Oleg; Woodward, Christopher; Uchic, Michael; Tiley, Jaimie. Exploration and Development of High Entropy Alloys for Structural Applications. Entropy. 10 January 2014, 16 (1): 494–525. Bibcode:2014Entrp..16..494M. doi:10.3390/e16010494 . 
  22. ^ Johnson, Duane; Millsaps, Laura. Ames Lab takes the guesswork out of discovering new high-entropy alloys. Ames Laboratory News (U.S. Dept. of Energy). 1 May 2018 [10 December 2018]. (原始內容存檔於2019-03-30). high-entropy alloys are notoriously difficult to make, requiring expensive materials and specialty processing techniques. Even then, attempts in a laboratory don't guarantee that a theoretically possible compound is physically possible, let alone potentially useful. 
  23. ^ 23.0 23.1 23.2 Zhang, Yong; Zuo, Ting Ting; Tang, Zhi; Gao, Michael C.; Dahmen, Karin A.; Liaw, Peter K.; Lu, Zhao Ping. Microstructures and properties of high-entropy alloys. Progress in Materials Science. April 2014, 61: 1–93. doi:10.1016/j.pmatsci.2013.10.001. 
  24. ^ Youssef, Khaled M.; Zaddach, Alexander J.; Niu, Changning; Irving, Douglas L.; Koch, Carl C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Materials Research Letters. 9 December 2014, 3 (2): 95–99. doi:10.1080/21663831.2014.985855 . 
  25. ^ Ji, Wei; Wang, Weimin; Wang, Hao; Zhang, Jinyong; Wang, Yucheng; Zhang, Fan; Fu, Zhengyi. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. January 2015, 56: 24–27. doi:10.1016/j.intermet.2014.08.008. 
  26. ^ Zou, Yu; Ma, Huan; Spolenak, Ralph. Ultrastrong ductile and stable high-entropy alloys at small scales. Nature Communications. 10 July 2015, 6 (1): 7748. Bibcode:2015NatCo...6.7748Z. PMC 4510962 . PMID 26159936. doi:10.1038/ncomms8748 . 
  27. ^ Chaudhary, V.; Mantri, S. A.; Ramanujan, R. V.; Banerjee, R. Additive manufacturing of magnetic materials. Progress in Materials Science. 2020-10-01, 114: 100688. ISSN 0079-6425. doi:10.1016/j.pmatsci.2020.100688 (英語). 
  28. ^ Irving, Michael. 3D-printable 5-metal alloy proves ultra-strong but ductile. New Atlas. 2022-08-10 [2022-08-10]. (原始內容存檔於2022-12-13) (美國英語). 
  29. ^ Yao, Chen-Zhong; Zhang, Peng; Liu, Meng; Li, Gao-Ren; Ye, Jian-Qing; Liu, Peng; Tong, Ye-Xiang. Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high-entropy alloy. Electrochimica Acta. November 2008, 53 (28): 8359–8365. doi:10.1016/j.electacta.2008.06.036. 
  30. ^ 30.0 30.1 Hsu, Ya-Chu; Li, Chia-Lin; Hsueh, Chun-Hway. Effects of Al Addition on Microstructures and Mechanical Properties of CoCrFeMnNiAlx High Entropy Alloy Films. Entropy. 2019-12-18, 22 (1): 2. Bibcode:2019Entrp..22....2H. ISSN 1099-4300. PMC 7516440 . PMID 33285777. doi:10.3390/e22010002 . 
  31. ^ Liao, Wei-Bing; Zhang, Hongti; Liu, Zhi-Yuan; Li, Pei-Feng; Huang, Jian-Jun; Yu, Chun-Yan; Lu, Yang. High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. Entropy. 2019-02-04, 21 (2): 146. Bibcode:2019Entrp..21..146L. ISSN 1099-4300. PMC 7514628 . PMID 33266862. doi:10.3390/e21020146 . 
  32. ^ Shaginyan, L. R.; Britun, V. F.; Krapivka, N. A.; Firstov, S. A.; Kotko, A. V.; Gorban, V. F. The Properties of Cr–Co–Cu–Fe–Ni Alloy Films Deposited by Magnetron Sputtering. Powder Metallurgy and Metal Ceramics. 2018-09-01, 57 (5): 293–300. ISSN 1573-9066. S2CID 139253120. doi:10.1007/s11106-018-9982-0 (英語). 
  33. ^ 33.0 33.1 Hsu, Ya-Chu; Li, Chia-Lin; Hsueh, Chun-Hway. Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element. Surface and Coatings Technology. 2020-10-15, 399: 126149. ISSN 0257-8972. S2CID 225592198. doi:10.1016/j.surfcoat.2020.126149 (英語). 
  34. ^ 34.0 34.1 Fang, Shuang; Wang, Cheng; Li, Chia-Lin; Luan, Jun-Hua; Jiao, Zeng-Bao; Liu, Chain-Tsuan; Hsueh, Chun-Hway. Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films. Journal of Alloys and Compounds. 2020-04-15, 820: 153388. ISSN 0925-8388. S2CID 213937088. doi:10.1016/j.jallcom.2019.153388 (英語). 
  35. ^ 35.0 35.1 Huang, Tzu-Hsuan; Hsueh, Chun-Hway. Microstructures and mechanical properties of (CoCrFeMnNi)100-xMox high entropy alloy films. Intermetallics. 2021-08-01, 135: 107236. ISSN 0966-9795. S2CID 236239363. doi:10.1016/j.intermet.2021.107236 (英語). 
  36. ^ Liang, Yu-Hsuan; Li, Chia-Lin; Hsueh, Chun-Hway. Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films. Coatings. 2021-12-14, 11 (12): 1539. ISSN 2079-6412. doi:10.3390/coatings11121539 . 
  37. ^ 37.0 37.1 Braic, V.; Vladescu, Alina; Balaceanu, M.; Luculescu, C. R.; Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology. Proceedings of Symposium K on Protective Coatings and Thin Films, E-MRS 2011 Conference. 2012-10-25, 211: 117–121. ISSN 0257-8972. doi:10.1016/j.surfcoat.2011.09.033 (英語). 
  38. ^ 38.0 38.1 38.2 38.3 Chen, T. K.; Shun, T. T.; Yeh, J. W.; Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology. Proceedings of the 31st International Conference on Metallurgical Coatings and Thin Films. 2004-11-01,. 188-189: 193–200. ISSN 0257-8972. doi:10.1016/j.surfcoat.2004.08.023 (英語). 
  39. ^ 39.0 39.1 Ren, Bo; Shen, Zigang; Liu, Zhongxia. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering. Journal of Alloys and Compounds. 2013-05-25, 560: 171–176. ISSN 0925-8388. doi:10.1016/j.jallcom.2013.01.148 (英語). 
  40. ^ 40.0 40.1 Cheng, Keng-Hao; Lai, Chia-Han; Lin, Su-Jien; Yeh, Jien-Wei. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films. 2011-03-01, 519 (10): 3185–3190. Bibcode:2011TSF...519.3185C. ISSN 0040-6090. doi:10.1016/j.tsf.2010.11.034 (英語). 
  41. ^ 41.0 41.1 Lai, Chia-Han; Lin, Su-Jien; Yeh, Jien-Wei; Chang, Shou-Yi. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology. 2006-12-04, 201 (6): 3275–3280. ISSN 0257-8972. doi:10.1016/j.surfcoat.2006.06.048 (英語). 
  42. ^ Zhang, W.; Tang, R.; Yang, Z. B.; Liu, C. H.; Chang, H.; Yang, J. J.; Liao, J. L.; Yang, Y. Y.; Liu, N. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/(AlCrMoNbZr)N. Journal of Nuclear Materials. 2018-12-15, 512: 15–24. Bibcode:2018JNuM..512...15Z. ISSN 0022-3115. S2CID 105282834. doi:10.1016/j.jnucmat.2018.10.001 (英語). 
  43. ^ 43.0 43.1 Huang, Ping-Kang; Yeh, Jien-Wei. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surface and Coatings Technology. 2009-03-25, 203 (13): 1891–1896. ISSN 0257-8972. doi:10.1016/j.surfcoat.2009.01.016 (英語). 
  44. ^ 44.0 44.1 Hsueh, Hwai-Te; Shen, Wan-Jui; Tsai, Ming-Hung; Yeh, Jien-Wei. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surface and Coatings Technology. 2012-05-25, 206 (19): 4106–4112. ISSN 0257-8972. doi:10.1016/j.surfcoat.2012.03.096 (英語). 
  45. ^ Kao, W. H.; Su, Y. L.; Horng, J. H.; Wu, H. M. Effects of carbon doping on mechanical, tribological, structural, anti-corrosion and anti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings. Thin Solid Films. 2021-01-01, 717: 138448. Bibcode:2021TSF...717m8448K. ISSN 0040-6090. S2CID 229423367. doi:10.1016/j.tsf.2020.138448 (英語). 
  46. ^ Yu, Xu; Wang, Junjun; Wang, Linqing; Huang, Weijiu. Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surface and Coatings Technology. 2021-04-25, 412: 127074. ISSN 0257-8972. S2CID 233695035. doi:10.1016/j.surfcoat.2021.127074 (英語). 
  47. ^ Zeng, Qunfeng; Xu, Yating. A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel. Materials Today Communications. 2020-09-01, 24: 101261. ISSN 2352-4928. S2CID 219474551. doi:10.1016/j.mtcomm.2020.101261 (英語). 
  48. ^ Sajid, Alvi. Synthesis and Characterization of High Entropy Alloy and Coating. ISBN 978-91-7790-395-6. OCLC 1102485976. 
  49. ^ 49.0 49.1 Liang, Shih-Chang; Tsai, Du-Cheng; Chang, Zue-Chin; Sung, Huan-Shin; Lin, Yi-Chen; Yeh, Yi-Jung; Deng, Min-Jen; Shieu, Fuh-Sheng. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Applied Surface Science. 2011-10-15, 258 (1): 399–403. Bibcode:2011ApSS..258..399L. ISSN 0169-4332. doi:10.1016/j.apsusc.2011.09.006 (英語). 
  50. ^ Feng, Xingguo; Tang, Guangze; Ma, Xinxin; Sun, Mingren; Wang, Liqin. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2013-04-15, 301: 29–35. Bibcode:2013NIMPB.301...29F. ISSN 0168-583X. doi:10.1016/j.nimb.2013.03.001 (英語). 
  51. ^ 51.0 51.1 Chang, Zue-Chin; Liang, Shih-Chang; Han, Sheng; Chen, Yi-Kun; Shieu, Fuh-Sheng. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010-08-15, 268 (16): 2504–2509. Bibcode:2010NIMPB.268.2504C. ISSN 0168-583X. doi:10.1016/j.nimb.2010.05.039 (英語). 
  52. ^ 52.0 52.1 Liu, L.; Zhu, J. B.; Hou, C.; Li, J. C.; Jiang, Q. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Materials & Design. 2013-04-01, 46: 675–679. ISSN 0261-3069. doi:10.1016/j.matdes.2012.11.001 (英語). 
  53. ^ Sheng, Wenjie; Yang, Xiao; Wang, Cong; Zhang, Yong. Nano-Crystallization of High-Entropy 無定形 NbTiAlSiWxNy Films Prepared by Magnetron Sputtering. Entropy. 2016-06-13, 18 (6): 226. Bibcode:2016Entrp..18..226S. ISSN 1099-4300. doi:10.3390/e18060226 . 
  54. ^ Lai, Chia-Han; Lin, Su-Jien; Yeh, Jien-Wei; Davison, Andrew. Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. Journal of Physics D: Applied Physics. 2006-11-07, 39 (21): 4628–4633. Bibcode:2006JPhD...39.4628L. ISSN 0022-3727. doi:10.1088/0022-3727/39/21/019. 
  55. ^ Hsieh, Ming-Hsiao; Tsai, Ming-Hung; Shen, Wan-Jui; Yeh, Jien-Wei. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology. 2013-04-25, 221: 118–123. ISSN 0257-8972. doi:10.1016/j.surfcoat.2013.01.036 (英語). 
  56. ^ Lai, Chia-Han; Tsai, Ming-Hung; Lin, Su-Jien; Yeh, Jien-Wei. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology. 2007-05-21, 201 (16): 6993–6998. ISSN 0257-8972. doi:10.1016/j.surfcoat.2007.01.001 (英語). 
  57. ^ Chang, Zue-Chin; Liang, Jun-Yang. Oxidation Behavior and Structural Transformation of (CrTaTiVZr)N Coatings. Coatings. 2020-04-22, 10 (4): 415. ISSN 2079-6412. doi:10.3390/coatings10040415 . 
  58. ^ Zhang, Cunxiu; Lu, Xiaolong; Wang, Cong; Sui, Xudong; Wang, Yanfang; Zhou, Haibin; Hao, Junying. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow. Journal of Materials Science & Technology. 2022-04-30, 107: 172–182. ISSN 1005-0302. S2CID 244583979. doi:10.1016/j.jmst.2021.08.032 (英語). 
  59. ^ Johansson, Kristina; Riekehr, Lars; Fritze, Stefan; Lewin, Erik. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition. Surface and Coatings Technology. 2018-09-15, 349: 529–539. ISSN 0257-8972. S2CID 103303702. doi:10.1016/j.surfcoat.2018.06.030 (英語). 


相關條目

編輯