倒向随机微分方程
(重定向自反向随机微分方程)
倒向随机微分方程(BSDE)是带有终点条件的随机微分方程,其解要根据底层滤波进行调整。BSDE自然地出现在各种应用中,如随机控制、金融数学与非线性费曼-卡茨公式。[1]
背景
编辑1973年让-米歇尔·比斯姆提出了BSDE线性情形[2],1990年法国学者Etienne Pardoux和中国学者彭实戈合作发表的论文中提出BSDE非线性情形,线性是广泛的非线性中的一特殊形式[3][4]。
数学框架
编辑固定终点时刻 与概率空间 。令 为布朗运动,其自然滤波 。BSDE是积分方程,其类型为
其中 称作BSDE的生成器,终点条件 是 -可测随机变量,解 包含随机过程 、 ,其适应于过滤 。
例子
编辑在 情形下,BSDE (1)简化为
另见
编辑参考文献
编辑- ^ Ma, Jin; Yong, Jiongmin. Forward-Backward Stochastic Differential Equations and their Applications. Lecture Notes in Mathematics 1702. Springer Berlin, Heidelberg. 2007 [2023-11-10]. ISBN 978-3-540-65960-0. doi:10.1007/978-3-540-48831-6. (原始内容存档于2023-08-09).
- ^ Bismut, Jean-Michel. Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications. 1973, 44 (2): 384–404. doi:10.1016/0022-247X(73)90066-8.
- ^ Pardoux, Etienne; Peng, Shi Ge. Adapted solution of a backward stochastic differential equation. Systems & Control Letters. 1990, 14: 55–61. doi:10.1016/0167-6911(90)90082-6.
- ^ 陈欢欢. 彭实戈院士:倒向随机微分方程理论在金融决策中的应用. news.sciencenet.cn. 科学网. 2008-06-29 [2024-01-07]. (原始内容存档于2024-01-07).
阅读更多
编辑- Pardoux, Etienne; Rӑşcanu, Aurel. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic modeling and applied probability. Springer International Publishing Switzerland. 2014.
- Zhang, Jianfeng. Backward stochastic differential equations. Probability theory and stochastic modeling. Springer New York, NY. 2017.