矩形
(重定向自四方形)
矩形 | |
---|---|
类型 | 四边形, 平行四边形, orthotope |
对偶 | 菱形 |
边 | 4 |
顶点 | 4 |
施莱夫利符号 | { } × { } or { }2 |
威佐夫符号 | 4 |
考克斯特符号 | |
鲍尔斯缩写 | rect |
对称群 | Dih2, [2], (*22), order 4 |
特性 | 凸, 等角, 圆内接多边形 对角相等 对边等长 |
“ | 在四边形中,四边相等且四个角是直角的,叫做正方形。 在四边形中,角是直角,但对边等长,叫做长方形。 |
” |
——欧几里得,《几何原本》 |
从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。正方形是四个边都等长的矩形,它的四个边都是等长的。
对于长方形两对相对的边,我们称横边为长,竖边为宽。长方形的面积是长和宽的乘积;用符号表示就是:A = lw。如图,一个长方形的长是5米,宽是4米,那么面积为20平方米,因为5 × 4 = 20。
定义
编辑性质
编辑- 矩形拥有所有平行四边形的性质,因为它是平行四边形的一种
- 矩形对角线相等
- 矩形4个角都是90°
判定
编辑- 有一个角是直角的平行四边形是矩形(定义)
- 对角线相等的平行四边形是矩形。
- 对角线相互平分且相等的四边形为矩形。
- 3个角是直角的四边形是矩形。
- 同时是圆内接四边形的平行四边形是矩形