残余应力是指固体材料在产生应力的主要来源去除之后,材料中仍存在的应力。残余应力可能是希望出现的特性,也可能是不希望出现的特性。例如激光强化英语laser peening就可以在金属材料(如发动机风扇叶片)加入很深,且对应用有益的压缩应力,也用在强化玻璃上,可以做为智能手机的玻璃显示幕,又大又薄,且有抗裂和抗划伤等性质。不过在结构中不希望出现的残余应力可能会使结构提早失效。

连续辊轧空心结构截面英语hollow structural section上面有残余应力,因此在切割时出现裂口

产生残余应力的机制有许多种,包括非弹性(塑性)变形、(温度循环下的)温度梯度或是结构变化(相变)。像焊接产生的热会造成局部的膨胀,可能是因为熔化的焊料,或是被焊接的工件。当焊件冷却后,有些部分可能会比其他部分冷却的更快,就会造成残余应力。像半导体器件制造微机电系统也可能会造成残余应力[1],不同热力质特性和结晶特性的薄膜材料在不同的制程条件下沉积时,就可能会有残余应力。薄膜材料堆叠的应力变化非常复杂,可能有些层是压缩应力,有些层就变成伸张应力。

相关条目 编辑

参考资料 编辑

  1. ^ Schiavone, G.; Murray, J.; Smith, S.; Desmulliez, M. P. Y.; Mount, A. R.; Walton, A. J. A wafer mapping technique for residual stress in surface micromachined films. Journal of Micromechanics and Microengineering. 2016-01-01, 26 (9): 095013 [2021-09-23]. Bibcode:2016JMiMi..26i5013S. ISSN 0960-1317. doi:10.1088/0960-1317/26/9/095013 . (原始内容存档于2019-12-09) (英语). 

延伸阅读 编辑

  • Hosford, William F. 2005. "Residual Stresses." In Mechanical Behavior of Materials, 308–321. Cambridge University Press. ISBN 978-0-521-84670-7
  • Cary, Howard B. and Scott C. Helzer (2005). Modern Welding Technology. Upper Saddle River, 新泽西州: Pearson Education. ISBN 0-13-113029-3.
  • Schajer, Gary S. 2013. Practical Residual Stress Measurement Methods. Wiley. ISBN 978-1-118-34237-4
  • Kehl, J.-H., Drafz, R., Pape, F. and Poll, G. 2016. Simulative investigations of the influence of surface indentations on residual stresses on inner raceways for roller element bearings, International Conference on Residual Stresses 2016 (Sydney), DOI: 10.21741/9781945291173-69页面存档备份,存于互联网档案馆

外部链接 编辑