背包问题

組合優化中的問題
(重定向自背包問題

背包问题(英语:Knapsack problem)是一种组合优化NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中,背包的空间有限,但我们需要最大化背包内所装物品的价值。背包问题通常出现在资源分配中,决策者必须分别从一组不可分割的项目或任务中进行选择,而这些项目又有时间或预算的限制。

背包问题的一个例子:应该选择哪些盒子,才能使价格尽可能地大,而保持重量小于或等于15 kg?当然这只是一维的限制条件,还存在多维限制条件的背包问题,比如空间和重量均可设限

背包问题历史悠久,甚至可以追溯到1897年。[1]“背包问题”一词最早出现于数学家托比阿斯·丹齐格的早期研究中,[2]他研究的问题是如何打包行李,要求最大化所选行李的价值且不能超载。

应用

编辑

背包问题出现在现实世界很多领域的决策过程中,诸如寻找节约原料的生产方式[3]、选择投资项目及投资组合[4]、选择证券化的资产[5]以及为默克尔-赫尔曼[6]和其他背包密码系统生成密钥。

背包问题的一个早期应用是测验编制与测验赋分,受测试者可以选择他们所需回答的问题。举个例子,受测者需要回答12道题,每道题10分,这时受测者只需要答对10道题就能得到满分100分。但是假如说每道题的赋分不同,问题的选择工作将会变得比较困难。对此,费尔曼和魏斯构建了一个系统,该系统分发给学生一张总分为125分且每道题赋分不等的考卷,学生则去尽力回答所有的问题。利用背包算法,可以算出每个学生可能获得的最高分数。[7]

1999年石溪大学算法库的一项研究表明,在75个算法问题中,背包问题在最受欢迎的问题中排名第19,在最常用的问题中排名第三,仅次于后缀树集装优化问题[8]

定义

编辑

我们有n种物品,物品j的重量为wj,价格为pj
我们假定所有物品的重量和价格都是非负的。背包所能承受的最大重量为W
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题

可以用公式表示为:

最大化 
受限于 

如果限定物品j最多只能选择bj个,则问题称为有界背包问题
可以用公式表示为:

最大化 
受限于 

如果不限定每种物品的数量,则问题称为无界背包问题
各类复杂的背包问题总可以变换为简单的0-1背包问题进行求解。

计算复杂度

编辑

在计算机科学领域,人们对背包问题感兴趣的原因在于:

动态规划解法

编辑

无界背包问题

编辑

如果重量w1, ..., wnW都是非负数,那么用动态规划,可以用伪多项式时间解决背包问题。下面描述了无界背包问题的解法。

简便起见,我们假定重量都是正数(wj > 0)。在总重量不超过W的前提下,我们希望总价格最高。对于YW,我们将在总重量不超过Y的前提下,总价格所能达到的最高值定义为A(Y)。A(W)即为问题的答案。

显然,A(Y)满足:

  • A(0) = 0
  • A(Y) = max { A(Y - 1), { pj + A(Y - wj) | wjY } }

其中,pj为第j种物品的价格。

关于第二个公式的一个解释:总重量为Y时背包的最高价值可能有两种情况,第一种是该重量无法被完全填满,这对应于表达式A(Y - 1)。第二种是刚好填满,这对应于一个包含一系列刚好填满的可能性的集合,其中的可能性是指当最后放进包中的物品恰好是重量为wj的物品时背包填满并达到最高价值。而这时的背包价值等于重量为wj物品的价值pj和当没有放入该物品时背包的最高价值之和。故归纳为表达式pj + A(Y - wj)。最后把所有上述情况中背包价值的最大值求出就得到了A(Y)的值。

如果总重量为0,总价值也为0。然后依次计算A(0), A(1), ..., A(W),并把每一步骤的结果存入表中供后续步骤使用,完成这些步骤后A(W)即为最终结果。由于每次计算A(Y)都需要检查n种物品,并且需要计算WA(Y)值,因此动态规划解法的时间复杂度为O(nW)。如果把w1, ..., wn, W都除以它们的最大公因数,算法的时间将得到很大的提升。

尽管背包问题的时间复杂度为O(nW),但它仍然是一个NP完全问题。这是因为W同问题的输入大小并不成线性关系。原因在于问题的输入大小仅仅取决于表达输入所需的比特数。事实上, ,即表达W所需的比特数,同问题的输入长度成线性关系。

0-1背包问题

编辑

类似的方法可以解决0-1背包问题,算法同样需要伪多项式时间。我们同样假定  都是正整数。我们将在总重量不超过 的前提下,前 种物品的总价格所能达到的最高值定义为 

 的递推关系为:

  •  
  • 如果 ,则 
  • 如果 ,则 

通过计算 即得到最终结果。

为提高算法性能,我们把先前计算的结果存入表中。因此算法需要的时间和空间都为 ,通过对算法的改进,空间的消耗可以降至 

二次背包问题

编辑

推广的背包问题有二次背包问题、多维背包问题多目标背包问题等。

二次背包问题是背包问题的一种推广形式:

最大化 
受限于  
  for all  

参考文献

编辑
  1. ^ Mathews, G. B. On the partition of numbers (PDF). Proceedings of the London Mathematical Society. 1897-06-25, 28: 486–490 [2022-05-05]. doi:10.1112/plms/s1-28.1.486. (原始内容 (PDF)存档于2012-05-26). 
  2. ^ Dantzig, Tobias. Number : the language of science The Masterpiece Science. New York: Plume Book. 2007. ISBN 9780452288119. 
  3. ^ Kellerer, Hans; Pferschy, Ulrich; Pisinger, David. Knapsack problems. Berlin: Springer. 2004: 449 [2022-05-05]. ISBN 978-3-540-40286-2. 
  4. ^ Kellerer, Hans; Pferschy, Ulrich; Pisinger, David. Knapsack problems. Berlin: Springer. 2004: 461 [2022-05-05]. ISBN 978-3-540-40286-2. 
  5. ^ Kellerer, Hans; Pferschy, Ulrich; Pisinger, David. Knapsack problems. Berlin: Springer. 2004: 465 [2022-05-05]. ISBN 978-3-540-40286-2. 
  6. ^ Kellerer, Hans; Pferschy, Ulrich; Pisinger, David. Knapsack problems. Berlin: Springer. 2004: 472 [2022-05-05]. ISBN 978-3-540-40286-2. 
  7. ^ Feuerman, Martin; Weiss, Harvey. A Mathematical Programming Model for Test Construction and Scoring. Management Science. April 1973, 19 (8): 961–966. JSTOR 2629127. doi:10.1287/mnsc.19.8.961. 
  8. ^ Skiena, S. S. Who is Interested in Algorithms and Why? Lessons from the Stony Brook Algorithm Repository. ACM SIGACT News. September 1999, 30 (3): 65–74. CiteSeerX 10.1.1.41.8357 . ISSN 0163-5700. S2CID 15619060. doi:10.1145/333623.333627. 

外部链接

编辑