裂项求和(Telescoping sum)是一个非正式的用语,指一种用来计算级数的技巧:每项可以分拆,令上一项和下一项的某部分互相抵消,剩下头尾的项需要计算,从而求得级数和。
裂项积(Telescoping product)也是差不多的概念:
1 a ( a + b ) = 1 b ( 1 a − 1 a + b ) {\displaystyle {\frac {1}{a(a+b)}}={\frac {1}{b}}\left({\frac {1}{a}}-{\frac {1}{a+b}}\right)}
a k = 1 a − 1 ( a k + 1 − a k ) {\displaystyle a^{k}={\frac {1}{a-1}}(a^{k+1}-a^{k})}
cos k x = 1 2 sin x 2 [ sin ( k + 1 2 ) x − sin ( k − 1 2 ) x ] {\displaystyle \cos kx={\frac {1}{2\sin {\frac {x}{2}}}}\left[\sin \left(k+{\frac {1}{2}}\right)x-\sin \left(k-{\frac {1}{2}}\right)x\right]}
sin k x = 1 2 sin x 2 [ cos ( k − 1 2 ) x − cos ( k + 1 2 ) x ] {\displaystyle \sin kx={\frac {1}{2\sin {\frac {x}{2}}}}\left[\cos \left(k-{\frac {1}{2}}\right)x-\cos \left(k+{\frac {1}{2}}\right)x\right]} (三角恒等式)[1]
C k n = C k n − 1 + C k − 1 n − 1 {\displaystyle C_{k}^{n}=C_{k}^{n-1}+C_{k-1}^{n-1}} (帕斯卡法则)
1 C k n = n + 1 n + 2 ( 1 C k n + 1 + 1 C k + 1 n + 1 ) {\displaystyle {\frac {1}{C_{k}^{n}}}={\frac {n+1}{n+2}}\left({\frac {1}{C_{k}^{n+1}}}+{\frac {1}{C_{k+1}^{n+1}}}\right)} [2]
若有 a k = b k − b k + 1 {\displaystyle a_{k}=b_{k}-b_{k+1}} ,则 ∑ k = m n a k = b m − b n + 1 {\displaystyle \sum _{k=m}^{n}a_{k}=b_{m}-b_{n+1}}
若有 a k = b k + b k + 1 {\displaystyle a_{k}=b_{k}+b_{k+1}} ,则 ∑ k = m n ( − 1 ) k a k = ( − 1 ) m b m + ( − 1 ) n + 1 b n + 1 {\displaystyle \sum _{k=m}^{n}(-1)^{k}a_{k}=(-1)^{m}b_{m}+(-1)^{n+1}b_{n+1}}
这是错误的。将每项重组的方法只适用于独立的项趋近0。
防止这种错误,可以先求首N项的值,然后取N趋近无限的值。