陈-西蒙斯理论
陈-西蒙斯理论(英语:Chern–Simons theory)以陈省身和詹姆斯·哈里斯·西蒙斯的名字命名,描述三维拓扑量子场论,在物理学有很多应用。此理论用陈-西蒙斯形式。
经典公式
编辑若(G,M)是主丛,M是流形,G是李群 / 规范群,A是联络,陈西蒙斯作用量是
F是曲率:
陈西蒙斯公式用最小作用量原理:
陈-西蒙斯理论和纽结多项式
编辑三维的陈-西蒙斯理论生成很多重要的纽结多项式和纽结不变量:[1]
陈西规范群G | 纽结多项式或不变量 |
---|---|
SO(N) | 考夫曼多项式 |
SU(N) | HOMFLY多项式 |
SU(2)或SO(3) | 锺斯多项式(跟括号多项式有关) |
U(1) | 环绕数 |
拓扑量子计算机
编辑拓扑量子计算机是一种量子计算机。陈西蒙斯理论陈述有些拓扑量子计算机的模型,例如“杨李模型”(Fibonacci model),这是最简单的非阿贝尔任意子拓扑量子计算机之一。[2][3]
参见
编辑- 陈-西蒙斯理论是最有名的拓扑量子场论之一
- 拓扑量子场论
- Wess-Zumino-Witten模型
- 纽结理论
参考文献
编辑- ^ Witten, Edward. Quantum field theory and the Jones polynomial. Communications in Mathematical Physics. 1989-09, 121 (3): 351–399. ISSN 0010-3616. doi:10.1007/BF01217730 (英语).
- ^ Freedman, Michael H.; Kitaev, Alexei; Larsen, Michael J.; Wang, Zhenghan. Topological Quantum Computation. arXiv:quant-ph/0101025. 2002-09-20 [2020-06-04]. (原始内容存档于2020-07-24).
- ^ Wang, Zhenghan. Topological Quantum Computation (PDF). (原始内容存档 (PDF)于2017-08-30).
阅读
编辑- Chern, S.-S. & Simons, J. Characteristic forms and geometric invariants. Annals of Mathematics. 1974, 99 (1): 48–69. doi:10.2307/1971013.
- Deser, Stanley; Jackiw, Roman; Templeton, S. Three-Dimensional Massive Gauge Theories (PDF). Physical Review Letters. 1982, 48: 975–978 [2019-12-28]. Bibcode:1982PhRvL..48..975D. doi:10.1103/PhysRevLett.48.975. (原始内容存档 (PDF)于2018-07-24).
- Intriligator, Kenneth; Seiberg, Nathan. Aspects of 3d N = 2 Chern–Simons-Matter Theories. Journal of High Energy Physics. 2013. Bibcode:2013JHEP...07..079I. arXiv:1305.1633 . doi:10.1007/JHEP07(2013)079.
- Jackiw, Roman; Pi, S.-Y. Chern–Simons modification of general relativity. Physical Review D. 2003, 68: 104012. Bibcode:2003PhRvD..68j4012J. arXiv:gr-qc/0308071 . doi:10.1103/PhysRevD.68.104012.
- Kulshreshtha, Usha; Kulshreshtha, D.S.; Mueller-Kirsten, H. J. W.; Vary, J. P. Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory under appropriate gauge fixing. Physica Scripta . 2009, 79: 045001. Bibcode:2009PhyS...79d5001K. doi:10.1088/0031-8949/79/04/045001.
- Kulshreshtha, Usha; Kulshreshtha, D.S.; Vary, J. P. Light-front Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory under appropriate gauge fixing. Physica Scripta. 2010, 82: 055101. Bibcode:2010PhyS...82e5101K. doi:10.1088/0031-8949/82/05/055101.
- Lopez, Ana; Fradkin, Eduardo. Fractional quantum Hall effect and Chern-Simons gauge theories. Physical Review B. 1991, 44: 5246. Bibcode:1991PhRvB..44.5246L. doi:10.1103/PhysRevB.44.5246.
- Marino, Marcos. Chern–Simons Theory and Topological Strings. Reviews of Modern Physics. 2005, 77 (2): 675–720. Bibcode:2005RvMP...77..675M. arXiv:hep-th/0406005 . doi:10.1103/RevModPhys.77.675.
- Marino, Marcos. Chern–Simons Theory, Matrix Models, And Topological Strings. International Series of Monographs on Physics. Oxford University Press. 2005.
- Witten, Edward. Topological Quantum Field Theory. Communications in Mathematical Physics. 1988, 117: 353 [2020-09-21]. Bibcode:1988CMaPh.117..353W. doi:10.1007/BF01223371. (原始内容存档于2017-08-25).
- Witten, Edward. Quantum Field Theory and the Jones Polynomial. Communications in Mathematical Physics. 1989, 121 (3): 351–399. Bibcode:1989CMaPh.121..351W. MR 0990772. doi:10.1007/BF01217730.
- Witten, Edward. Chern–Simons Theory as a String Theory. Progress in Mathematics. 1995, 133: 637–678. Bibcode:1992hep.th....7094W. arXiv:hep-th/9207094 .