在多体系统的研究中,常用雅可比坐标来简化数学计算。这一坐标系统可以用于多个领域,尤其是天体物理[3],以及多原子分子和化学反应[4] 。一个用于N体问题建立雅可比坐标的算法是利用二叉树[5]。这一算法可以这样描述:

二体问题的雅可比坐标系为质心坐标 和相对坐标 ;其中, [1]
四体问题一个可能的雅可比坐标系。r1, r2, r3为雅可比坐标,R为质心。[2]

质量分别为mjmk的两个物体用一个质量为M = mj + mk的虚拟物体代替。同时,用相对坐标向量rjk = xj − xk和质心坐标向量Rjk = (mj qj + mkqk)/(mj + mk)来替代两个物体原来的坐标向量xjxk。二叉树中的一个节点即为这一虚拟物体。它有两个子节点,左子节点为mk,右子节点为mj。对N-1个物体重复以上步骤。

四体问题的结果是[2]

其中:

向量R是所有物体的质心:

参考资料

编辑
  1. ^ David Betounes. Differential Equations. Springer. 2001: 58; Figure 2.15. 
  2. ^ 2.0 2.1 Patrick Cornille. Partition of forces using Jacobi coordinates. Advanced electromagnetism and vacuum physics. World Scientific. 2003: 102 [2012-11-18]. ISBN 981-238-367-0. (原始内容存档于2020-08-11). 
  3. ^ 示例见Edward Belbruno. Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press. 2004: 9. ISBN 0-691-09480-2. 
  4. ^ John Z. H. Zhang. Theory and application of quantum molecular dynamics. World Scientific. 1999: 104. ISBN 981-02-3388-4. 
  5. ^ Hildeberto Cabral, Florin Diacu. Appendix A: Canonical transformations to Jacobi coordinates. Classical and celestial mechanics. Princeton University Press. 2002: 230. ISBN 0-691-05022-8.