在晶体中,势场具有周期性,如果给其中电子的波函数加以周期性边界条件,则波函数将具有布洛赫波的形式:[1]
-
其中 是简约波矢, 是周期函数,且周期与晶格的周期完全相同。[1]
将该表达式代入定态薛定谔方程,可得 满足的方程。该方程在形式上类似于定态薛定谔方程:[1]
-
其“哈密顿算符”为:
K·p微扰论适用于简约波矢 较小的情形下。此时可将“哈密顿算符”中不含有简约波矢 的项视为无微扰的“哈密顿算符”,把含有简约波矢 的项视为“微扰哈密顿算符”,即:[1]
-
利用微扰方法可以用所有 的线性组合表达某个能带的 ,进而给出能量 与简约波矢 的近似关系。如果 是不简并的,考虑到一级修正后 的表达式为:[1]
-
考虑二级修正以后能量的表达式为:[1]
-
电子的倒有效质量张量近似为:[1]
-
在直接带隙半导体中,导带底部的电子对应的简约波矢为零,它的有效质量可运用K·p微扰论近似计算。微扰论中最近邻态的微扰贡献最大。导带底和价带顶的态互为最近邻态,仅考虑彼此的微扰贡献,K·p微扰论的结果可进一步简化为:[1]
-
式中 为导带底与价带顶的能量差,即带隙;脚标v和c分别指代价带顶与导带底的态。如果所考虑的导带底是旋转对称的,倒有效质量张量可以用一个标量代替:[1]
-
表明半导体的带隙越小,导带底电子有效质量也越小。对通常的半导体来说,导带底电子的有效质量远小于电子的真实质量,且矩阵元与电子真实质量的比值近似为一个常量10eV。故:[1]
-
该公式给出的导带底电子有效质量近似值与绝大多数IV族、III-V族、II-VI族直接带隙半导体实测值的误差在15%以内。[3]
如果考虑自旋-轨道作用,仍然可以用类似方法处理。此时“哈密顿算符”应写为:[2]
-
如果 有简并,需要使用简并微扰理论。[4]Luttinger–Kohn模型可以处理这类问题。[5]