k-d树
一種用於搜尋多維空間當中的點的二元空間分割樹
此条目没有列出任何参考或来源。 (2024年2月14日) |
在计算机科学里,k-d树(k-维树的缩写)是在k维欧几里德空间组织点的数据结构。k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索)。k-d树是空间二分树的一种特殊情况。
k-d 树 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
类型 | 多维 二叉搜索树 | ||||||||||||||||||||
发明时间 | 1975年 | ||||||||||||||||||||
发明者 | 乔恩·本特利 | ||||||||||||||||||||
用大O符号表示的时间复杂度 | |||||||||||||||||||||
|
简介
编辑k-d树是每个叶子节点都为k维点的二叉树。所有非叶子节点可以视作用一个超平面把空间分割成两个半空间。节点左边的子树代表在超平面左边的点,节点右边的子树代表在超平面右边的点。选择超平面的方法如下:每个节点都与k维中垂直于超平面的那一维有关。因此,如果选择按照x轴划分,所有x值小于指定值的节点都会出现在左子树,所有x值大于指定值的节点都会出现在右子树。这样,超平面可以用该x值来确定,其法线为x轴的单位向量。
k-d树的运算
编辑建立k-d树
编辑有很多种方法可以选择轴垂直分割面(axis-aligned splitting planes),所以有很多种建立k-d树的方法。 最典型的方法如下:
- 随着树的深度轮流选择轴当作分割面。(例如:在三维空间中根节点是 x 轴垂直分割面,其子节点皆为 y 轴垂直分割面,其孙节点皆为 z 轴垂直分割面,其曾孙节点则皆为 x 轴垂直分割面,依此类推。)
- 点由垂直分割面之轴座标的中位数区分并放入子树
这个方法产生一个平衡的k-d树。每个叶节点的高度都十分接近。然而,平衡的树不一定对每个应用都是最佳的。
function kdtree (list of points pointList, int depth) { // Select axis based on depth so that axis cycles through all valid values var int axis := depth mod k; // Sort point list and choose median as pivot element select median by axis from pointList; // Create node and construct subtrees var tree_node node; node.location := median; node.leftChild := kdtree(points in pointList before median, depth+1); node.rightChild := kdtree(points in pointList after median, depth+1); return node; }
插入元素
编辑移除元素
编辑平衡
编辑在动态插入删除点且不允许预处理插入操作的情况下,一种平衡的方法是使用类似替罪羊树的方法重构整棵树。
最邻近搜索用来找出在树中与输入点最接近的点。
k-d树最邻近搜索的过程如下:
- 从根节点开始,递归的往下移。往左还是往右的决定方法与插入元素的方法一样(如果输入点在分区面的左边则进入左子节点,在右边则进入右子节点)。
- 一旦移动到叶节点,将该节点当作"目前最佳点"。
- 解开递归,并对每个经过的节点执行下列步骤:
- 如果目前所在点比目前最佳点更靠近输入点,则将其变为目前最佳点。
- 检查另一边子树有没有更近的点,如果有则从该节点往下找
- 当根节点搜索完毕后完成最邻近搜索
处理高维数据
编辑维数灾难让大部分的搜索算法在高维情况下都显得花俏且不实用。 同样的,在高维空间中,k-d树也不能做很高效的最邻近搜索。一般的准则是:在k维情况下,数据点数目N应当远远大于 时,k-d树的最邻近搜索才可以很好的发挥其作用。不然的话,大部分的点都会被查询,最终算法效率也不会比全体查询一遍要好到哪里去。另外,如果只是需要一个足够快,且不必最优的结果,那么可以考虑使用近似邻近查询的方法。
外部链接
编辑- libkdtree++, an open-source STL-like implementation of k-d trees in C++.
- A tutorial on KD Trees
- A C++ implementation of k-d trees for 3D point clouds, part of the Mobile Robot Programming Toolkit (MRPT)
- kdtree (页面存档备份,存于互联网档案馆) A simple C library for working with KD-Trees
- K-D Tree Demo, Java applet (页面存档备份,存于互联网档案馆)
- libANN (页面存档备份,存于互联网档案馆) Approximate Nearest Neighbour Library includes a k-d tree implementation
- Caltech Large Scale Image Search Toolbox: a Matlab toolbox implementing randomized k-d tree for fast approximate nearest neighbour search, in addition to LSH, Hierarchical K-Means, and Inverted File search algorithms.