S型函数

具有特徵“ S”形曲線或S形曲線的數學函數
(重定向自Sigmoid函数

S型函数(英语:sigmoid function,或称乙状函数)是一种函数,因其函数图像形状像字母S得名。其形状曲线至少有2个焦点,也叫“二焦点曲线函数”。S型函数是有界可微的实函数,在实数范围内均有取值,且导数恒为非负[1],有且只有一个拐点。S型函数和S型曲线指的是同一事物。

S型函数的曲线图形
S型函数在复数域的分布图形

逻辑斯谛函数是一种常见的S型函数,其公式如下:[1]

其级数展开为:

其他S型函数案例见下。在一些学科领域,特别是人工神经网络中,S型函数通常特指逻辑斯谛函数。

常见的S型函数

编辑
 
一些S型函数的比较,图中的函数皆以原点斜率为1的方式归一化。
 
 
 
 
 
 
 
 

所有连续非负的凸形函数的积分都是S型函数,因此许多常见概率分布累积分布函数会是S型函数。一个常见的例子是误差函数,它是正态分布的累积分布函数。

参考文献

编辑
  1. ^ 1.0 1.1 Han, Jun; Morag, Claudio. The influence of the sigmoid function parameters on the speed of backpropagation learning. Mira, José; Sandoval, Francisco (编). From Natural to Artificial Neural Computation. Lecture Notes in Computer Science 930. 1995: 195–201. ISBN 978-3-540-59497-0. doi:10.1007/3-540-59497-3_175. 
  • Mitchell, Tom M. Machine Learning. WCB–McGraw–Hill. 1997. ISBN 0-07-042807-7. . In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural nets.
  • Humphrys, Mark. Continuous output, the sigmoid function. [2015-02-01]. (原始内容存档于2015-02-02).  Properties of the sigmoid, including how it can shift along axes and how its domain may be transformed.

参见

编辑