墨西拿盐度危机

墨西哥時代結束時地中海的干燥

墨西拿盐度危机(英语:Messinian salinity crisis)是一件大约发生在596万到533万年之前的地质事件。墨西拿期中新世的第六个阶段,在此期间地中海与大西洋的连接直布罗陀海峡被关闭,地中海最终完全干涸成为盆地,导致全球海洋盐度下降[1][2]

墨西拿盐度危机期间的地中海盆地的艺术诠释

起因 编辑

 
中新世西地中海的古地理重建
  今日海岸线
S 西班牙 Sorbas 盆地
R Rifean 走廊
B Betic 走廊
G 直布罗陀海峡
M 地中海

墨西拿盐度危机的起因有多种说法,但普遍共识是古气候变化和地质构造运动是主要原因[3],而两者的影响规模大小仍有争议和不同解释[4][5][6]。亚欧板块和非洲板块之间的弧型构造带直布罗陀弧被认为是导致地中海与大西洋分离的原因[7][8],该地区的板块运动控制了中新世晚期直布罗陀海峡的开启和关闭,至于这一构造运动的细节仍然有不同说法[9][10][11],有三种地球动力学模型可能适合相关数据[12],移动的俯冲带可能导致了周期性的区域隆起,火山岩的变化表明特提斯海边缘的俯冲带可能向西卷缩,从而改变了西地中海下方岩浆的化学成分和密度[13]。除了构造运动外,古气候变化而导致的全球海面升降是另外一个重要因素,在地中海海域的钻探发现蒸发岩层中常有远海沉积物夹层,内含常规海洋相生物,无过渡带,代表陆表盐湖环境与常规海洋环境存在周期性快速互变,这种周期性显然与全球海平面的升降有关[14]

过程 编辑

 
墨西拿盐度危机期间蒸发岩形成的假设
a: 历时沉积:蒸发岩(粉红色)首先沉积在陆上盆地,随着地中海(深蓝色)的范围向门户减小,更靠近大西洋。 浅蓝色显示原始海平面。
b: 边缘盆地同步沉积: 海平面略有下降,但整个盆地仍与大西洋相连。 减少的流入量只允许蒸发岩在浅盆地中积累。
c: 同步、全盆地沉积。 构造活动(深灰色)对大西洋海道的关闭或限制导致整个盆地同时蒸发岩沉积; 水池可能不需要完全排空,因为盐分会通过蒸发浓缩。

地中海深海海底的沉积物样本,包括蒸发岩矿物、土壤和植物化石,表明直布罗陀海峡的前身在大约596万年前闭合,将地中海与大西洋隔开[15][16]。该地区普遍干燥的气候在1000年内使地中海盆地几乎完全干涸,留下了一个低于正常海平面达3至5公里(1.9至3.1英里)的干涸盆地,其中有几个类似于今天死海的高盐区。在550万年前左右,干燥的气候条件减缓,导致盆地从河流接收更多淡水,逐渐将高盐湖填充并稀释成更大的咸水区(与今天的里海很相似),在墨西拿期末,地中海盆内所含盐分完全沉积到盆地中心,地中海周边陆上及海底留下了大量侵蚀不整合面[17][18],例如在意大利西岸萨迪纳岛及西班牙东岸、西西里盆地、塞浦路斯、叙利亚及黎巴嫩外海等地[19][20][21]。533万年前,直布罗陀海峡终于重新开放,墨西拿盐度危机就此结束,当时大西洋的海水迅速填满了地中海盆地,称之为赞克尔期洪水[22]

影响 编辑

 
海水每蒸发一米会形成一毫米厚的石膏沉积

来自地中海的水将在世界海洋中重新分配,使全球海平面上升10米(33英尺)。地中海盆地也在其海底封存了相当一部分来自地球海洋的盐,使世界海洋的平均盐度降低了6-10%[23][24]。随着地中海水域盐度的迅速增高,大量无法忍受高盐度的海洋生物灭绝。盆地的低海拔将通过绝热加热使其在夏季变得非常热,硬石膏的存在支持了这一结论,硬石膏仅沉积在温度高于35°C(95°F)的水中。流入盆地的河流会将河床切割得更深,尼罗河至少在地中海盆地边缘切割了2400米深的下切谷。有一种观点认为,在墨西拿期红海在苏伊士与地中海相连,但没有与印度洋相连,并随着地中海干涸[25][26]。墨西拿盐度危机还为许多非洲物种,包括羚羊大象河马,提供了一个机会,当海平面下降时,它们可以迁移到靠近下降的大河的空盆地,到达马耳他等内陆潮湿凉爽的高地,海水回流后,它们留在群岛上,在更新世期间,它们在岛上经历了岛屿矮化,由此产生了克里特侏儒河马塞浦路斯侏儒河马等已灭绝物种,其中塞浦路斯侏儒河马一直存活到更新世末或全新世早期[27][28][29][30]

遗迹 编辑

 
Sorbas 盆地的海底石膏沉积

地中海水位下降的主要证据来自许多现在被淹没的峡谷的遗迹,这些地中海盆地两侧的峡谷被流入原为海底的平原的河流切割[31][32]尼罗河阿斯旺将河床切割到海平面以下几百英尺,1967年伊万·S·丘马科夫在那里发现了上新世的海洋有孔虫[33]。在以色列的阿非海底峡谷(Afig submarine canyon),峡谷充填物下层是石膏、上层是河流相沉积物,代表在中新世晚期海底曾露于陆表被河流切割。根据峡谷深度,海水面曾下降800米[34]。在利比亚北部有一条中新世晚期的下切谷,长150公里,至少700米深,被河流切割的是中新世中期石灰岩,下切谷中的冲填物是上新世河流沉积物。同样年代的下切谷也分布于利比亚东部及埃及西部,这代表地中海的海面在中新世晚期至少下降700米[35]。在叙利亚及黎巴嫩外海,埋藏在海底深部的晚中新世晚期的蒸发岩上部也有大面积的河流相沉积物,这代表地中海在晚中新世几乎干枯的环境[21]。在地中海的许多地方,人们发现了泥质沉积物在阳光和干旱下干燥开裂的化石裂缝[36]

延伸阅读 编辑

参考文献 编辑

  1. ^ Manzi, Vinicio, et a.2020. The Messinian salinity crisis in the Adriatic foredeep: Evolution of the largest evaporitic marginal basin in the Mediterranean. Marine and Petroleum Geology Vol. 115
  2. ^ Gargani J.; Rigollet C. (2007). "Mediterranean Sea level variations during the Messinian Salinity Crisis". Geophysical Research Letters. 34 (10): L10405
  3. ^ Gargani J, Rigollet C. Mediterranean Sea level variations during the Messinian Salinity Crisis.. Geophysical Research Letters. 2007, 34 (L10405): L10405. Bibcode:2007GeoRL..3410405G. S2CID 128771539. doi:10.1029/2007GL029885 . 
  4. ^ van Dijk, J.P., Barberis, A., Cantarella, G., and Massa, E. (1998); Central Mediterranean Messinian basin evolution. Tectono-eustasy or eustato-tectonics? Annales Tectonicae, 12, n. 1-2, 7-27.
  5. ^ Gargani J, Rigollet C (2007). "Mediterranean Sea level variations during the Messinian Salinity Crisis". Geophysical Research Letters. 34 (L10405): L10405. Bibcode:2007GeoRL..3410405G
  6. ^ van Dijk, J.P., Barberis, A., Cantarella, G., and Massa, E. (1998); Central Mediterranean Messinian basin evolution. Tectono-eustasy or eustato-tectonics? Annales Tectonicae, 12, n. 1-2, 7-27
  7. ^ Weijermars, Ruud (May 1988). "Neogene tectonics in the Western Mediterranean may have caused the Messinian salinity crisis and an associated glacial event". Tectonophysics. 148 (3–4): 211–219
  8. ^ van Dijk J.P., Okkes F.W.M. (1991). "Neogene tectonostratigraphy and kinematics of Calabrian Basins. implications for the geodynamics of the Central Mediterranean". Tectonophysics. 196 (1–2): 23–60
  9. ^ Lonergan, Lidia; White, Nicky (June 1997). "Origin of the Betic-Rif mountain belt". Tectonics. 16 (3): 504–522
  10. ^ Platt, J. P.; Vissers, R.L.M. (1989). "Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc". Geology. 17 (6): 540
  11. ^ Jackson, J.A.; Austrheim, H.; McKenzie, D.; Priestley, K. (2004). "Metastability, mechanical strength, and the support of mountain belts". Geology. 32 (7): 625
  12. ^ van Dijk J.P., Okkes F.W.M. Neogene tectonostratigraphy and kinematics of Calabrian Basins. implications for the geodynamics of the Central Mediterranean. Tectonophysics. 1991, 196 (1–2): 23–60. Bibcode:1991Tectp.196...23V. doi:10.1016/0040-1951(91)90288-4. 
  13. ^ Lonergan, Lidia; White, Nicky. Origin of the Betic-Rif mountain belt. Tectonics. June 1997, 16 (3): 504–522. Bibcode:1997Tecto..16..504L. doi:10.1029/96TC03937. hdl:10044/1/21686 . 
  14. ^ Sonnenfeld, Peter,. 2015.The Significance of Upper Miocene (Messinian) Evaporites in the Mediterranean Sea. The Journal of Geology. Vol. 83, No. 3 P. 287-311
  15. ^ Cunliffe, Sir Barry. On the Ocean: The Mediterranean and the Atlantic from prehistory to AD 1500. Oxford University Press. 2017-09-29: 56 [2021-10-04]. ISBN 978-0-19-107534-6. (原始内容存档于2021-10-12) (英语). the remnant Tethys became joined to the Atlantic, roughly along the line of what was to become the Strait of Gibraltar. About 5.96 million years ago this gap closed, initiating what is known as the Messinian Salinity Crisis, which lasted for more than half a million years before the Atlantic was reunited once more with the Mediterranean. 
  16. ^ Gargani J.; Rigollet C. Mediterranean Sea level variations during the Messinian Salinity Crisis.. Geophysical Research Letters. 2007, 34 (10): L10405. Bibcode:2007GeoRL..3410405G. S2CID 128771539. doi:10.1029/2007gl029885 . 
  17. ^ Schreiber, C. S., et al. 1976. Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentology, Vol. 23 Issue 6. p.729-760
  18. ^ Lofi, Johanna, et al. 2011. Seismic Atlas of the Messinian Salinity Crisis markers in the Mediterranean and Black Seas. Commission for the Geological Map of the World & Memories of the French Geological Society ISBN 2-85363-097-8
  19. ^ Mailland, Agnes, et al., 2020. New onshore/offshore evidence of the Messinian Erosion Surface from key areas: The Ibiza-Balearic Promontory and the Orosei-Eastern Sardinian margin.Bulletin de la Société Géologique de France。 Vol。191。https://doi.org/10.1051/bsgf/2020007
  20. ^ Schreiber, C. S., et al. 1976. Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentology, Vol. 23 Issue 6. p.729-760,
  21. ^ 21.0 21.1 Madof, A. S., etal., 2019. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology Vol. 47, P. 171–174
  22. ^ Clauzon, Georges; Suc, Jean-Pierre; Gautier, François; Berger, André; Loutre, Marie-France. Alternate interpretation of the Messinian salinity crisis: Controversy resolved?. Geology. 1996, 24 (4): 363. Bibcode:1996Geo....24..363C. doi:10.1130/0091-7613(1996)024<0363:AIOTMS>2.3.CO;2. 
  23. ^ Lecture 17: Mediterranean 互联网档案馆存档,存档日期2010-05-23.
  24. ^ Warren, John K. Evaporites: sediments, resources and hydrocarbons. Birkhäuser. 2006: 147 [2016-12-15]. ISBN 978-3-540-26011-0. (原始内容存档于2021-10-04). 
  25. ^ Vast "Grand Canyon" Lurks 8,200 Feet BENEATH Cairo, Egypt. Biot Report 403. September 21, 2006. 
  26. ^ https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL032494页面存档备份,存于互联网档案馆), Geophysical Research Letters, Evaporite accumulation during the Messinian Salinity Crisis: The Suez Rift case, by Julien Gargani, Isabelle Moretti, Jean Letouzey, First published: 16 January 2008, https://doi.org/10.1029/2007GL032494
  27. ^ A. Simmons. Faunal extinction in an island society: pygmy hippopotamus hunters of Cyprus. Geoarchaeology. 2000, 15 (4): 379–381. doi:10.1002/(SICI)1520-6548(200004)15:4<379::AID-GEA7>3.0.CO;2-E. 
  28. ^ Gargani J.; Rigollet C; Scarselli S. Isostatic response and geomorphological evolution of the Nile valley during the Messinian salinity crisis.. Bull. Soc. Géol. Fr. 2010, 181: 19–26. doi:10.2113/gssgfbull.181.1.19. 
  29. ^ Gargani J. Modelling of the erosion in the Rhone valley during the Messinian crisis (France). Quaternary International. 2004, 121: 13–22. Bibcode:2004QuInt.121...13G. doi:10.1016/j.quaint.2004.01.020. 
  30. ^ Petronio, C. Note on the taxonomy of Pleistocene hippopotamuses (PDF). Ibex. 1995, 3: 53–55 [2008-08-23]. (原始内容 (PDF)存档于2008-09-12). 
  31. ^ Gargani J.; Rigollet C; Scarselli S. Isostatic response and geomorphological evolution of the Nile valley during the Messinian salinity crisis.. Bull. Soc. Géol. Fr. 2010, 181: 19–26. doi:10.2113/gssgfbull.181.1.19. 
  32. ^ Gargani J. Modelling of the erosion in the Rhone valley during the Messinian crisis (France). Quaternary International. 2004, 121 (1): 13–22. Bibcode:2004QuInt.121...13G. doi:10.1016/j.quaint.2004.01.020. 
  33. ^ Warren, J.K. Evaporites: sediments, resources and hydrocarbons. Birkhäuser. 2006: 352 [2016-12-15]. ISBN 978-3-540-26011-0. (原始内容存档于2021-11-06). 
  34. ^ Druckman, Y., et al ., 1995.The buried Afiq Canyon (Eastern Mediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times. Marine Geology Volume 123, Issues 3–4, April 1995, Pages 167-185)
  35. ^ Barr, F. T. and Walker, B. R. 2004. LATE TERTIARY CHANNEL SYSTEM IN NORTHERN LIBYA AND ITS IMPLICATIONS ON MEDITERRANEAN SEA LEVEL CHANGES. in Petroleum Geology of Libya, ed. Hallett, Don. Publ. Elservier. ISBN 50525-3
  36. ^ Wade, B.S.; Brown P.R. Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 233 (3–4): 271–286 [2016-12-15]. doi:10.1016/j.palaeo.2005.10.007. (原始内容存档 (PDF)于2016-03-03). 

参看 编辑