覆盖 (拓扑学)
拓扑学
(重定向自子覆盖)
在数学中,若 是一个集合类 中并集的子集,则集合类 是集合 的覆盖。用符号来说,如果 是 的子集索引族,则 是如下条件下的覆盖(定义可参见: Gamelin 与 Greene 第19页或 Kelly 第49页)
- 。
更一般的说,如果 是 的子集,而 是 的子集 的搜集,它的并集包含 ,则 被称为是 的覆盖。也就是 是 的覆盖如果
- 。
拓扑学中覆盖
编辑覆盖通常用在拓扑学的上下文中。如果集合 是拓扑空间,我们称 是开覆盖,如果它的每个成员都是开集(就是说每个 都包含在 中,这里的 是 上的拓扑)。
如果 是 的覆盖,则 的子覆盖是 的仍覆盖 的子集。
的开覆盖被称为是局部有限的,如果对任意 的点 都存在一个邻域,其只与这个覆盖中有限多个集合有交集。用符号来说, 是局部有限的,如果对于任何 ,存在某个 的邻域 使得集合
是有限的。
精细
编辑的覆盖 的精细(或称加细)是 的新覆盖 ,使得在 中的任意的一个集合,都包含在 的某个集合中。
用符号来说,有 覆盖 、 ,如果对任意的 ,都存在某个 使得 ,我们则说 是覆盖 的精细。
所有子覆盖也是精细,反之不然。但是注意一般的说精细将比原始覆盖有更多的集合。
紧致性
编辑覆盖的这个词语经常用来定义与紧致性有关的拓扑性质。一个拓扑空间 X 被称为
引用
编辑- Theodore W. Gamelin & Robert Everist Greene. Introduction to Toplogy Second Edition. Dover Publications. 1999. ISBN 0-486-40680-6 (英语).
- John L. Kelly. General Topology. Princeton, NJ.: D. Van Nostrand Company, Inc. 1955 (英语).