截半三阶无限边形镶嵌

几何学中,截半三阶无限边形镶嵌(英语:Triapeirogonal tiling)是一种由三角形无限边形拼合的双曲半正镶嵌,可利用三阶无限边形镶嵌经由截角变换构造而得,在施莱夫利符号中用r{∞,3}表示。

截半三阶无限边形镶嵌
截半三阶无限边形镶嵌
庞加莱圆盘模型
类别双曲半正镶嵌
对偶多面体无限阶三菱形镶嵌
识别
鲍尔斯缩写
verse-and-dimensions的wikiaBowers acronym
tazt在维基数据编辑
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node infin node_1 3 node 
施莱夫利符号r{∞,3}
威佐夫符号
英语Wythoff symbol
2 | ∞ 3
组成与布局
顶点图3.∞.3.∞
对称性
对称群[∞,3], (*∞32)
旋转对称群
英语Rotation_groups
[∞,3]+, (∞32)
特性
边可递
图像

无限阶三菱形镶嵌
对偶多面体

性质

编辑

截半三阶无限边形镶嵌每个顶点周围皆有两个三角形和两个无限边形交错排列,即每个顶点为两个三角形和两个无限边形的公共顶点,顶点图以3.∞.3.∞表示。截半三阶无限边形镶嵌为截半三阶镶嵌(截半四面体截半立方体截半二十面体截半六边形镶嵌截半七边形镶嵌......)系列的极限。

相关半正镶嵌

编辑

截半三阶无限边形镶嵌在拓扑上与一系列一直延伸到双曲镶嵌的顶点图为3.n.3.n且拥有[n,3]考克斯特群的(广义)拟正多面体相关:

拟正多面体和镶嵌系列:3.n.3.n
对称群
*n32
[n,3]
球面 欧氏镶嵌 紧凑型双曲镶嵌 仿紧型镶嵌 非紧型镶嵌
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
 
[iπ/λ,3]
拟正顶点
布局
 
3.3.3.3
 
3.4.3.4
 
3.5.3.5
 
3.6.3.6
 
3.7.3.7
 
3.8.3.8
 
3.∞.3.∞
 
3.∞.3.∞
考克斯特纪号                                                
对偶
(菱形)
顶点
布局
 
V3.3.3.3
 
V3.4.3.4
 
V3.5.3.5
 
V3.6.3.6
 
V3.7.3.7
 
V3.8.3.8
 
V3.∞.3.∞
考克斯特纪号                                                
[∞,3]非紧凑双曲半正镶嵌系列
对称群:[∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
                                                                 
     
=     
     
=     
     
=     
            =
     or     
      =
     or     
     
=     
                 
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
半正对偶
                                                           
                 
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞

参见

编辑

参考文献

编辑

外部链接

编辑