截角五维正六胞体

截角五维正六胞体由30个顶点、75条、80个、45个(15个正四面体和30个截角四面体),和12个四维胞(6个正五胞体和6个截角正五胞体)组成。

截角五维正六胞体
类型五维均匀多胞体
维度5
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node_1 3 node_1 3 node 3 node 3 node 
施莱夫利符号t0,1{3,3,3,3}
性质
四维12
6 {3,3,3}
6 t{3,3,3}
45
30 {3,3}
15 t{3,3}
80
60 {3}
20 {6}
75
顶点30
组成与布局
顶点图
五胞体
对称性
考克斯特群A5 [3,3,3,3], order 720
特性
convex

坐标

编辑

简单地说,截角五维正六胞体的顶点坐标为六维空间的(0,0,0,0,1,2)(0,1,2,2,2,2)的全排列。

图像

编辑
正交投影
Ak
考克斯特平面
A5 A4
Graph    
二面体群 [6] [5]
Ak
考克斯特平面
A3 A2
Graph    
二面体群 [4] [3]

参考文献

编辑
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]页面存档备份,存于互联网档案馆
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. 5D uniform polytopes (polytera). bendwavy.org.  x3x3o3o3o - tix, o3x3x3o3o - bittix

外部链接

编辑