在逻辑中,无限值逻辑无限多值逻辑)是一种多值逻辑,其中真值包含连续范围。传统上,在亚里士多德的逻辑中,除二值逻辑之外的逻辑都是不正常的,因为排中律排除了任何命题的两个以上可能值(即“真”和“假”)[1]。现代三值逻辑允许额外的可能真值(即“未定”)[2],并且是有限值逻辑的一个范例,其中真值是离散的,而不是连续的。无限值逻辑则包括连续模糊逻辑,尽管某些形式的模糊逻辑可以进一步包含有限值逻辑。例如,有限值逻辑可以应用于布林值建模[3][4]描述逻辑[5]、和对模糊逻辑的去模糊化[6][7]

参考资料

编辑
  1. ^ Weisstein, Eric. Law of the Excluded Middle. MathWorld--A Wolfram Web Resource. 2018. 
  2. ^ Weisstein, Eric. Three-Valued Logic. MathWorld--A Wolfram Web Resource. 2018. 
  3. ^ Klawltter, Warren A. Boolean values for fuzzy sets. Theses and Dissertations, paper 2025 (学位论文) (Lehigh Preserve). 1976. 
  4. ^ Perović, Aleksandar. Fuzzy Sets – a Boolean Valued Approach (PDF). 4th Serbian-Hungarian Joint Symposium on Intelligent Systems. Conferences and Symposia @ Óbuda University. 2006. 
  5. ^ Cerami, Marco; García-Cerdaña, Àngel; Esteva, Frances. On finitely-valued Fuzzy Description Logics. International Journal of Approximate Reasoning. 2014, 55 (9): 1890–1916. doi:10.1016/j.ijar.2013.09.021 . hdl:10261/131932. 
  6. ^ Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk. Satisfiability Checking in Łukasiewicz Logic as Finite Constraint Satisfaction. Journal of Automated Reasoning. 2012, 49 (4): 493–550. doi:10.1007/s10817-011-9227-0. 
  7. ^ 1.4.4 Defuzzification (PDF). Fuzzy Logic. Swiss Federal Institute of Technology Zurich: 4. 2014 [2018-05-16]. (原始内容 (PDF)存档于2009-07-09).