克拉梅尔猜想

(重定向自最大素数差猜想

数学上的克拉梅尔猜想(Cramér's conjecture)是瑞典数学家哈拉尔德·克拉梅尔在1937年提出的关于素数间隙的猜想。[1]该猜想是说:

这里代表第素数。该猜想到现在仍未证出或被否证。

关于素数间隙的条件结果

编辑

克拉梅尔也提出另一个较弱的关于素数间隙的猜想,指出在黎曼猜想成立的状况下,有

 [1]

目前这方面最好的无条件结果是

 

而这点由R·C·贝克(R. C. Baker)、格林·哈曼英语Glyn Harman平茨·亚诺什匈牙利语Pintz János三人证出。[2]

另一方面,E·韦斯钦蒂乌斯(E. Westzynthius)于1931年证明素数间隙成长速度快过对数,也就是说,[3]

 

罗伯特·亚历山大·兰金英语Robert Alexander Rankin改进了他的结果,[4]并证明道

 

埃尔德什·帕尔猜想表示上式的左侧趋近于无限,而这点于2014年由凯文·福特英语Kevin Ford (mathematician)本·格林英语Ben Green (mathematician)谢尔盖·科尼亚金英语Sergei Konyagin陶哲轩四人组。[5]以及詹姆斯·梅纳德分别证出。[6]这两组人马在该年稍晚将该结果以 因子进行改进。[7]

探索性论证

编辑

克拉梅尔猜想是基于本质上探索性概率模型英语Probabilistic number theory之上的,在其中一个大小为x的数是素数的概率是 。而该结果又称作“克拉梅尔随机模型”(Cramér random model)或“克拉梅尔素数模型”(Cramér model of the primes)。[8]

根据克拉梅尔随机模型,以下事件的概率为一[1]

 

然而,安德鲁·格兰维尔英语Andrew Granville指出,[9]根据迈尔定理,克拉梅尔随机模型不能适切地描述素数在短区间上的分布,而在考虑可除性后,修正版克拉梅尔模型指向 A125313),其中 欧拉-马斯刻若尼常数。平茨·亚诺什则认为该比值的上极限可能发散至无限;[10]

类似地,伦纳德·阿德曼和凯文·麦柯利(Kevin McCurley)写道:

“由于H. Maier关于相邻素数间隙的工作之故,学界对克拉梅尔猜想的确实公式起了疑问…(中略)因此很有可能对于任意的常数 而言,总存在一个常数,使得  有一个素数。”[11]

类似地,罗宾·维瑟(Robin Visser)写道:

“事实上,由于格兰维尔的工作之故,现在学界普遍相信克拉梅尔猜想是错的。实际上也确实有迈尔定理等关于短区间的定理,和克拉梅尔模型难以兼容。”[12]

相关猜想和探索

编辑
 
素数间隙函数

丹尼尔·尚克斯英语Daniel Shanks猜想表示对素数间隙而言,下列比克拉梅尔猜想来得强的非病态公式成立:[13]  

J·H·卡德韦尔(J.H. Cadwell)[14]则提出下列何素数间隙有关的公式:   该公式和尚克斯猜想在形式上一致,但同时提出了低次项。

马雷克·沃尔夫(Marek Wolf)[15]则猜想在以素数计数函数 表示的状况下,最大素数间隙 如下:

 

其中  孪生素数常数的两倍,可见A005597A114907的相关内容。再一次地,该公式和尚克斯猜想在形式上一致,但同时提出了如下的低次项:

 

托马斯·雷·奈斯利德语Thomas Ray Nicely(发现奔腾浮点除错误的数学家)曾对许多大素数间隙进行计算,[16]他借由下列公式来计算素数间隙与克拉梅尔猜想相契合的程度:

 

他写道“即使对于已知最大的素数间隙, 的值都维持在1.13左右”。

参见

编辑

参考资料

编辑
  1. ^ 1.0 1.1 1.2 Cramér, Harald, On the order of magnitude of the difference between consecutive prime numbers (PDF), Acta Arithmetica, 1936, 2: 23–46 [2012-03-12], doi:10.4064/aa-2-1-23-46, (原始内容 (PDF)存档于2018-07-23) 
  2. ^ R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II. Proc. London Math. Soc. (3), 83 (2001), no. 3, 532-562
  3. ^ Westzynthius, E., Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind, Commentationes Physico-Mathematicae Helsingsfors, 1931, 5: 1–37, JFM 57.0186.02, Zbl 0003.24601 (德语) .
  4. ^ R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247
  5. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Tao, Terence. Large gaps between consecutive prime numbers. Annals of Mathematics. Second series. 2016, 183 (3): 935–974. arXiv:1408.4505 . doi:10.4007/annals.2016.183.3.4 . 
  6. ^ Maynard, James. Large gaps between primes. Annals of Mathematics. Second series. 2016, 183 (3): 915–933. arXiv:1408.5110 . doi:10.4007/annals.2016.183.3.3 . 
  7. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence. Long gaps between primes. Journal of the American Mathematical Society. 2018, 31: 65–105. arXiv:1412.5029 . doi:10.1090/jams/876. 
  8. ^ Terry Tao, 254A, Supplement 4: Probabilistic models and heuristics for the primes (optional)页面存档备份,存于互联网档案馆), section on The Cramér random model, January 2015.
  9. ^ Granville, A., Harald Cramér and the distribution of prime numbers (PDF), Scandinavian Actuarial Journal, 1995, 1: 12–28 [2007-06-05], doi:10.1080/03461238.1995.10413946, (原始内容 (PDF)存档于2015-09-23) .
  10. ^ János Pintz, Very large gaps between consecutive primes, Journal of Number Theory 63:2 (April 1997), pp. 286–301.
  11. ^ Leonard Adleman英语Leonard Adleman and Kevin McCurley, Open Problems in Number Theoretic Complexity, II. Algorithmic number theory (Ithaca, NY, 1994), 291–322, Lecture Notes in Comput. Sci., 877, Springer, Berlin, 1994.
  12. ^ Robin Visser, Large Gaps Between Primes页面存档备份,存于互联网档案馆), University of Cambridge (2020).
  13. ^ Shanks, Daniel, On Maximal Gaps between Successive Primes, Mathematics of Computation (American Mathematical Society), 1964, 18 (88): 646–651, JSTOR 2002951, Zbl 0128.04203, doi:10.2307/2002951  .
  14. ^ Cadwell, J. H., Large Intervals Between Consecutive Primes, Mathematics of Computation, 1971, 25 (116): 909–913, JSTOR 2004355, doi:10.2307/2004355  
  15. ^ Wolf, Marek, Nearest-neighbor-spacing distribution of prime numbers and quantum chaos, Phys. Rev. E, 2014, 89 (2): 022922 [2024-01-09], Bibcode:2014PhRvE..89b2922W, PMID 25353560, S2CID 25003349, arXiv:1212.3841 , doi:10.1103/physreve.89.022922, (原始内容存档于2024-06-04) 
  16. ^ Nicely, Thomas R., New maximal prime gaps and first occurrences, Mathematics of Computation, 1999, 68 (227): 1311–1315, Bibcode:1999MaCom..68.1311N, MR 1627813, doi:10.1090/S0025-5718-99-01065-0  .

外部链接

编辑