核糖体移码

(重定向自翻译框转移

核糖体移码(Ribosomal frameshift)又称翻译移码(Translational frameshift),是生物细胞中核糖体进行翻译时,mRNA上的特测序列与二级结构使核糖体发生位移而破坏开放阅读框的现象[3]。由于mRNA上的密码子是由3个核苷酸对应一个氨基酸,+1、-1等核糖体移码会影响下游的开放阅读框,进而翻译出完全不同的蛋白质[4]。核糖体移码可使一个mRNA得以翻译出数种不同的蛋白质产物,此机制主要在病毒逆转录病毒[5]劳斯肉瘤病毒英语Rous sarcoma virus(RSV)[1]冠状病毒[6]流感病毒[7]逆转录转座子等)的mRNA中发现,但也见于一些真核生物细胞基因的mRNA,可能为细胞调控基因表达的机制之一[8][9]

劳斯肉瘤病毒英语Rous sarcoma virus(RSV)的mRNA翻译时在滑动序列发生-1核糖体移码[1]
mRNA上出现罕见的精氨酸密码子AGG,使翻译停滞,核糖体发生+1核糖体移码后密码子变成常见许多的甘氨酸密码子GGC[2]

最常见的核糖体移码为-1核糖体移码(programmed −1 ribosomal frameshifting, −1 PRF),此外还有较罕见的+1核糖体移码与-2核糖体移码[3]。发生-1核糖体移码的序列通常包含滑动序列英语slippery sequence、间隔序列(spacer)与茎环等三个元件,典型的滑动序列基序英语Sequence motif为X_XXY_YYH(X可为任意核苷酸、Y为AU、H则为ACU三者之一),-1移码发生时,原与XXY密码子结合的核糖体P位点与其上的tRNA向前位移,改与XXX结合,同时原与YYH结合的A位点与其tRNA也改与YYY结合,新的反密码子/密码子配对除密码子三号位的核苷酸外,一号位与二号位的核苷酸皆与原本的相同[10],而三号位因有摆动碱基对,反密码子/密码子的结合力本就较弱,不对两者的结合造成严重影响[3][11]

发生+1核糖体移码的序列则没有特定基序[2],一般机制为使用一较罕见(对应tRNA的量较少)的密码子使翻译发生停滞,增加核糖体发生移码的机会[2][12]

参考文献 编辑

  1. ^ 1.0 1.1 Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. November 1988, 55 (3): 447–458. PMC 7133365 . PMID 2846182. doi:10.1016/0092-8674(88)90031-1. 
  2. ^ 2.0 2.1 2.2 Harger JW, Meskauskas A, Dinman JD. An "integrated model" of programmed ribosomal frameshifting. Trends in Biochemical Sciences. 2002, 27 (9): 448–454. PMID 12217519. doi:10.1016/S0968-0004(02)02149-7. 
  3. ^ 3.0 3.1 3.2 Napthine S, Ling R, Finch LK, Jones JD, Bell S, Brierley I, Firth AE. Protein-directed ribosomal frameshifting temporally regulates gene expression. Nature Communications. 2017, 8: 15582. Bibcode:2017NatCo...815582N. PMC 5472766 . PMID 28593994. doi:10.1038/ncomms15582. 
  4. ^ Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Research. 2016, 44 (15): 7007–7078. PMC 5009743 . PMID 27436286. doi:10.1093/nar/gkw530. 
  5. ^ Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988, 331 (6153): 280–283. Bibcode:1988Natur.331..280J. PMID 2447506. S2CID 4242582. doi:10.1038/331280a0. 
  6. ^ Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology. 2005, 332 (2): 498–510. PMC 7111862 . PMID 15680415. doi:10.1016/j.virol.2004.11.038 . 
  7. ^ Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012, 337 (6091): 199–204. Bibcode:2012Sci...337..199J. PMC 3552242 . PMID 22745253. doi:10.1126/science.1222213. 
  8. ^ Ketteler R. On programmed ribosomal frameshifting: the alternative proteomes. Frontiers in Genetics. 2012, 3: 242. PMC 3500957 . PMID 23181069. doi:10.3389/fgene.2012.00242  (英语). 
  9. ^ Advani VM, Dinman JD. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. BioEssays. 2016, 38 (1): 21–26. PMC 4749135 . PMID 26661048. doi:10.1002/bies.201500131. 
  10. ^ Brierley I. Ribosomal frameshifting viral RNAs. The Journal of General Virology. 1995,. 76 (Pt 8) (8): 1885–1892. PMID 7636469. doi:10.1099/0022-1317-76-8-1885 . 
  11. ^ Crick FH. Codon—anticodon pairing: the wobble hypothesis. Journal of Molecular Biology. 1966, 19 (2): 548–555. PMID 5969078. doi:10.1016/S0022-2836(66)80022-0. 
  12. ^ Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV. Programmed −1 frameshifting by kinetic partitioning during impeded translocation. Cell. 2014, 157 (7): 1619–1631. PMC 7112342 . PMID 24949973. doi:10.1016/j.cell.2014.04.041 .