自体荧光是生物结构(例如线粒体溶酶体)在它们吸收光时自然发射的光,并且被用于区分源自人工添加的荧光标记(荧光团)的光[1]

紫外线照射下,的自身荧光显微照相照片。

最常见的自体荧光分子是NADPH和黄素; 细胞外基质也可以有助于自发荧光,因为胶原蛋白弹性蛋白的固有特性[1]

通常,含有增加数量的氨基酸色氨酸酪氨酸苯丙氨酸的蛋白质显示一定程度的自发荧光[2]

医学上,有运用电射激光引发人体内内源性卟啉的自体荧光,用以诊断癌症等疾病的方式[3]

来自小鼠肠的组织的多光谱图像,显示自体荧光如何遮蔽几个荧光信号。

显微镜

编辑
 
自体荧光超高分辨率显微镜记录细胞结构

自体荧光在荧光显微镜中可能是有问题的。将发光染料(例如荧光标记的抗体)应用于样品以使得特定结构能够可见。

自体荧光干扰特定荧光信号的检测,特别是当感兴趣的信号非常暗淡时 - 它使得除了感兴趣的结构之外的结构变得可见。

在一些显微镜(主要是共聚焦显微镜)中,可以利用添加的荧光标记物和内源分子的激发态的不同寿命以排除大多数自体荧光。

在少数情况下,自体荧光实际上可照射感兴趣的结构,或用作有用的诊断指示物。

自发荧光分子

编辑
分子类型
单光子激发波长 (nm)
荧光波长 (nm)
存在组织
引用
还原型烟酰胺腺嘌呤二核苷酸(NADH) 260 450 所有生物机体 [4]
叶绿素 465, 665 673, 726 植物
胶原蛋白 270-370 305-450 动物 [4]
维生素A 500 动物及细菌 [5]
核黄素 550 所有机体 [5]
维生素D3 380-460 动物 [5]
叶酸 450 所有机体 [5]
吡哆醇 400 所有机体 [5]
酪氨酸 270 305 所有机体 [2]
二酪氨酸 325 400 动物 [2]
激基缔合物 270 360 动物 胶原蛋白[2]
聚糖 370 450 动物 [2]
吲哚胺 动物
脂褐素 410-470 500-695 真核生物 [6]
多酚 植物
色氨酸 280 300-350 所有生物
黑色素 340–400 360–560 动物 [7]

参考文献

编辑
  1. ^ 1.0 1.1 Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu. Rev. 2005, 11: 227–56. PMID 16216779. doi:10.1016/S1387-2656(05)11007-2. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 Julian M. Menter. Temperature dependence of collagen fluorescence. Photochem. Photobiol. Sci. 2006, 5 (4): 403–410. PMID 16583021. doi:10.1039/b516429j. 
  3. ^ 恶性肿瘤特征自体荧光的来源以及在诊断中的应用--《复旦学报(自然科学版)》1986年01期. www.cnki.com.cn. [2020-08-10]. (原始内容存档于2013-10-25). 
  4. ^ 4.0 4.1 Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 2002-02-01, 62 (3): 682–7. PMID 11830520. 
  5. ^ 5.0 5.1 5.2 5.3 5.4 Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A. 2003-06-10, 100 (12): 7075–80. PMC 165832 . PMID 12756303. doi:10.1073/pnas.0832308100. 
  6. ^ Schönenbrücher, Holger; et al. Fluorescence-Based Method, Exploiting Lipofuscin, for Real-Time Detection of Central Nervous System Tissues on Bovine Carcasses. Journal of Agricultural and Food Chemistry. 2008, 56 (15): 6220–6226. doi:10.1021/jf0734368. 
  7. ^ James M. Gallas and Melvin Eisner. Fluorescence of Melanin-Dependence upon Excitation Wavelength and Concentration. Photochem. And Photobiol. May 1987, 45 (5): 595–600. doi:10.1111/j.1751-1097.1987.tb07385.x.