在数学中,长球波函数由一个限时、限频、与第二个限时的函数相乘而成。假定表示一个切截时间的运算器,且,则x必为有限时间区间的函数,当x在的区间内。同理,假定表示一个理想的低频滤波器,且,则x必为有限带宽区间的函数,当x在的区间内。透过组合上述运算子,使得转变成线性、有界自伴的运算式。对于,我们假设为第n项的本征函数,定义下列函式

其中为对应的本征值。此时限函数即为长球波函数(PSWFs).在此领域中,几个非常重要的先驱文章由Slepian and Pollak,[1] Landau and Pollak,[2][3] and Slepian.[4][5]所提出。

这些函数有些不同的意涵,当在解亥姆霍兹方程,透过在长球面坐标系做变数分离,使得各代表:

and .

得到解为长球波函数与角球波函数的成积乘上. 这里的变数c可定义为, with 为长球的椭圆截面的两焦点的距离。

径向波(The radial wave function)满足线性常微分方程:

此本征值Sturm-Liouville 微分方程中已被固定,透过设定为有限函数,当 .

角波函数满足下列微分方程:

这跟径向波函数式为同样的微分方程。然而,这两式的变数的范围是不同的(在径向波函数中),在角波函数中)。

当给定,这两个微分方程可以简化成满足伴随勒让德多项式的式子。当给定,角波函数可被展开成勒让德级数。

注意,如果我们将角波函数写成,函数将满足以下线性微分方程:

此函数为球波函数。这个辅助方程式在Stratton[6] 1935年的文章被当作例子。

现存不少不同的球函数标准化的方法,在Abramowitz and Stegun.[7]的文章中有整理的表格。Abramowitz跟Stegun(以及现在的相关文章)都沿用Flammer当初提出来的符号[8]

一开始,球波函数是由C. Niven,[9]提出,他在球座标上引入Helmholtz方程式。许多专题论文已经探讨出球波函数的很多面向,例如Strutt,[10] Stratton et al.,[11] Meixner and Schafke,[12] and Flammer.[8]等人的作品。

Flammer[8]提供了一个完整的讨论,计算出长球与扁球的本征值、角波函数与径函数。许多计算机程序已经因应发展出来,其中包含King与其团队,[13] Patz和Van Buren,[14] Baier与其团队,[15] Zhang和Jin,[16] Thompson,[17]、Falloon.[18] Van Buren和Boisvert[19][20]最近发展出新的方法去计算出长球波函数,延伸了数值解的能力,能运算极广的变数范围。Fortran源代码结合了新的结果与传统的方法,可见于http://www.mathieuandspheroidalwavefunctions.com.。 (页面存档备份,存于互联网档案馆

Flammer,[8] Hunter,[21][22] Hanish et al.,[23][24][25] and Van Buren et al.[26]等人也提出了数值解的整理表格。

NIST提供的DLMF(Digital Library of Mathematical Functions)(http://dlmf.nist.gov)是個了解球波函數的良好資源。[永久失效链接]

关于值域落在单位球的表面的长球波函数,我们通称为"Slepian functions"[27] (另见“频谱集中问题”)。这函数存在非常多的应用,像是大地测量[28]以及宇宙学.[29]

参考文献

编辑
  1. ^ D. Slepian and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I[永久失效链接] Bell System Technical Journal 40 (1961)
  2. ^ H. J. Landau and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - II[永久失效链接] Bell System Technical Journal 40 (1961)
  3. ^ H. J. Landau and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty -- III: The Dimension of the Space of Essentially Time- and Band-Limited Signals[永久失效链接] Bell System Technical Journal 41 (1962)
  4. ^ D. Slepian Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal Functions[永久失效链接] Bell System Technical Journal 43 (1964)
  5. ^ D. Slepian. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty - V: The Discrete Case[永久失效链接] Bell System Technical Journal 57 (1978)
  6. ^ J. A. Stratton Spheroidal functions页面存档备份,存于互联网档案馆 Proceedings of the National Academy of Sciences (USA) 21, 51 (1935)
  7. ^ . M. Abramowitz and I. Stegun. Handbook of Mathematical Functions pp. 751-759页面存档备份,存于互联网档案馆) (Dover, New York, 1972)
  8. ^ 8.0 8.1 8.2 8.3 C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
  9. ^ C. Niven )On the conduction of heat in ellipsoids of revolution.页面存档备份,存于互联网档案馆 Philosophical transactions of the Royal Society of London, 171 p. 117 (1880)
  10. ^ M. J. O. Strutt. Lamesche, Mathieusche and Verdandte Funktionen in Physik und Technik Ergebn. Math. u. Grenzeb, 1, pp. 199-323, 1932
  11. ^ J. A. Stratton, P. M. Morse, J. L. Chu, and F. J. Corbato. Spheroidal Wave Functions Wiley, New York, 1956
  12. ^ J. Meixner and F. W. Schafke. Mathieusche Funktionen und Sphäroidfunktionen Springer-Verlag, Berlin, 1954
  13. ^ B. J. King, R. V. Baier, and S Hanish A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives.页面存档备份,存于互联网档案馆 (1970)
  14. ^ B. J. Patz and A. L. Van Buren A Fortran computer program for calculating the prolate spheroidal angular functions of the first kind.页面存档备份,存于互联网档案馆 (1981)
  15. ^ R. V. Baier, A. L. Van Buren, S. Hanish, B. J. King - Spheroidal wave functions: their use and evaluation页面存档备份,存于互联网档案馆) The Journal of the Acoustical Society of America, 48, pp. 102–102 (1970)
  16. ^ S. Zhang and J. Jin. Computation of Special Functions, Wiley, New York, 1996
  17. ^ W. J. Thomson Spheroidal Wave functions 互联网档案馆存档,存档日期2010-02-16. Computing in Science & Engineering p. 84, May–June 1999
  18. ^ P. E. Falloon Thesis on numerical computation of spheroidal functions 互联网档案馆存档,存档日期2011-04-11. University of Western Australia, 2002
  19. ^ A. L. Van Buren and J. E. Boisvert. Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives, Quarterly of Applied Mathemathics 60, pp. 589-599, 2002
  20. ^ A. L. Van Buren和J. E. Boisvert. Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives, Quarterly of Applied Mathematics 62, pp. 493-507, 2004
  21. ^ H. E. Hunter Tables of prolate spheroidal functions for m=0: Volume I.页面存档备份,存于互联网档案馆 (1965)
  22. ^ H. E. Hunter Tables of prolate spheroidal functions for m=0 : Volume II.页面存档备份,存于互联网档案馆 (1965)
  23. ^ S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 1, prolate, m = 0[失效链接] (1970)
  24. ^ S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 2, prolate, m = 1页面存档备份,存于互联网档案馆 (1970)
  25. ^ S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 3, prolate, m = 2页面存档备份,存于互联网档案馆 (1970)
  26. ^ A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish. Tables of angular spheroidal wave functions, vol. 1, prolate, m = 0, Naval Research Lab. Publication, U. S. Govt. Printing Office, 1975
  27. ^ F. J. Simons, M. A. Wieczorek and F. A. Dahlen. Spatiospectral concentration on a sphere. SIAM Review, 2006, doi:10.1137/S0036144504445765
  28. ^ F. J. Simons and Dahlen, F. A. Spherical Slepian functions and the polar gap in Geodesy. Geophysical Journal International, 2006, doi:10.1111/j.1365-246X.2006.03065.x
  29. ^ F. A. Dahlen和F. J. Simons. Spectral estimation on a sphere in geophysics and cosmology. Geophysical Journal International, 2008, doi:10.1111/j.1365-246X.2008.03854.x

外部链接

编辑