在數學中,長球波函數由一個限時、限頻、與第二個限時的函數相乘而成。假定表示一個切截時間的運算器,且,則x必為有限時間區間的函數,當x在的區間內。同理,假定表示一個理想的低頻濾波器,且,則x必為有限頻寬區間的函數,當x在的區間內。透過組合上述運算子,使得轉變成線性、有界自伴的運算式。對於,我們假設為第n項的本徵函數,定義下列函式

其中為對應的本徵值。此時限函數即為長球波函數(PSWFs).在此領域中,幾個非常重要的先驅文章由Slepian and Pollak,[1] Landau and Pollak,[2][3] and Slepian.[4][5]所提出。

這些函數有些不同的意涵,當在解亥姆霍兹方程,透過在長球面坐標系做變數分離,使得各代表:

and .

得到解為長球波函數與角球波函數的成積乘上. 這裡的變數c可定義為, with 為長球的橢圓截面的兩焦點的距離。

徑向波(The radial wave function)滿足線性常微分方程:

此本徵值Sturm-Liouville 微分方程中已被固定,透過設定為有限函數,當 .

角波函數滿足下列微分方程:

這跟徑向波函數式為同樣的微分方程。然而,這兩式的變數的範圍是不同的(在徑向波函數中),在角波函數中)。

當給定,這兩個微分方程可以簡化成滿足伴隨勒讓德多項式的式子。當給定,角波函數可被展開成勒讓德級數。

注意,如果我們將角波函數寫成,函數將滿足以下線性微分方程:

此函數為球波函數。這個輔助方程式在Stratton[6] 1935年的文章被當作例子。

現存不少不同的球函數標準化的方法,在Abramowitz and Stegun.[7]的文章中有整理的表格。Abramowitz跟Stegun(以及現在的相關文章)都沿用Flammer當初提出來的符號[8]

一開始,球波函數是由C. Niven,[9]提出,他在球座標上引入Helmholtz方程式。許多專題論文已經探討出球波函數的很多面向,例如Strutt,[10] Stratton et al.,[11] Meixner and Schafke,[12] and Flammer.[8]等人的作品。

Flammer[8]提供了一個完整的討論,計算出長球與扁球的本徵值、角波函數與徑函數。許多電腦程式已經因應發展出來,其中包含King與其團隊,[13] Patz和Van Buren,[14] Baier與其團隊,[15] Zhang和Jin,[16] Thompson,[17]、Falloon.[18] Van Buren和Boisvert[19][20]最近發展出新的方法去計算出長球波函數,延伸了數值解的能力,能運算極廣的變數範圍。Fortran原始碼結合了新的結果與傳統的方法,可見於http://www.mathieuandspheroidalwavefunctions.com.。 (页面存档备份,存于互联网档案馆

Flammer,[8] Hunter,[21][22] Hanish et al.,[23][24][25] and Van Buren et al.[26]等人也提出了數值解的整理表格。

NIST提供的DLMF(Digital Library of Mathematical Functions)(http://dlmf.nist.gov)是個了解球波函數的良好資源。[永久失效連結]

關於值域落在單位球的表面的長球波函數,我們通稱為"Slepian functions"[27] (另見「頻譜集中問題」)。這函數存在非常多的應用,像是大地測量[28]以及宇宙學.[29]

參考文獻

编辑
  1. ^ D. Slepian and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I[永久失效連結] Bell System Technical Journal 40 (1961)
  2. ^ H. J. Landau and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - II[永久失效連結] Bell System Technical Journal 40 (1961)
  3. ^ H. J. Landau and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty -- III: The Dimension of the Space of Essentially Time- and Band-Limited Signals[永久失效連結] Bell System Technical Journal 41 (1962)
  4. ^ D. Slepian Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal Functions[永久失效連結] Bell System Technical Journal 43 (1964)
  5. ^ D. Slepian. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty - V: The Discrete Case[永久失效連結] Bell System Technical Journal 57 (1978)
  6. ^ J. A. Stratton Spheroidal functions页面存档备份,存于互联网档案馆 Proceedings of the National Academy of Sciences (USA) 21, 51 (1935)
  7. ^ . M. Abramowitz and I. Stegun. Handbook of Mathematical Functions pp. 751-759页面存档备份,存于互联网档案馆) (Dover, New York, 1972)
  8. ^ 8.0 8.1 8.2 8.3 C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
  9. ^ C. Niven )On the conduction of heat in ellipsoids of revolution.页面存档备份,存于互联网档案馆 Philosophical transactions of the Royal Society of London, 171 p. 117 (1880)
  10. ^ M. J. O. Strutt. Lamesche, Mathieusche and Verdandte Funktionen in Physik und Technik Ergebn. Math. u. Grenzeb, 1, pp. 199-323, 1932
  11. ^ J. A. Stratton, P. M. Morse, J. L. Chu, and F. J. Corbato. Spheroidal Wave Functions Wiley, New York, 1956
  12. ^ J. Meixner and F. W. Schafke. Mathieusche Funktionen und Sphäroidfunktionen Springer-Verlag, Berlin, 1954
  13. ^ B. J. King, R. V. Baier, and S Hanish A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives.页面存档备份,存于互联网档案馆 (1970)
  14. ^ B. J. Patz and A. L. Van Buren A Fortran computer program for calculating the prolate spheroidal angular functions of the first kind.页面存档备份,存于互联网档案馆 (1981)
  15. ^ R. V. Baier, A. L. Van Buren, S. Hanish, B. J. King - Spheroidal wave functions: their use and evaluation页面存档备份,存于互联网档案馆) The Journal of the Acoustical Society of America, 48, pp. 102–102 (1970)
  16. ^ S. Zhang and J. Jin. Computation of Special Functions, Wiley, New York, 1996
  17. ^ W. J. Thomson Spheroidal Wave functions 互联网档案馆存檔,存档日期2010-02-16. Computing in Science & Engineering p. 84, May–June 1999
  18. ^ P. E. Falloon Thesis on numerical computation of spheroidal functions 互联网档案馆存檔,存档日期2011-04-11. University of Western Australia, 2002
  19. ^ A. L. Van Buren and J. E. Boisvert. Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives, Quarterly of Applied Mathemathics 60, pp. 589-599, 2002
  20. ^ A. L. Van Buren和J. E. Boisvert. Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives, Quarterly of Applied Mathematics 62, pp. 493-507, 2004
  21. ^ H. E. Hunter Tables of prolate spheroidal functions for m=0: Volume I.页面存档备份,存于互联网档案馆 (1965)
  22. ^ H. E. Hunter Tables of prolate spheroidal functions for m=0 : Volume II.页面存档备份,存于互联网档案馆 (1965)
  23. ^ S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 1, prolate, m = 0[失效連結] (1970)
  24. ^ S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 2, prolate, m = 1页面存档备份,存于互联网档案馆 (1970)
  25. ^ S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 3, prolate, m = 2页面存档备份,存于互联网档案馆 (1970)
  26. ^ A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish. Tables of angular spheroidal wave functions, vol. 1, prolate, m = 0, Naval Research Lab. Publication, U. S. Govt. Printing Office, 1975
  27. ^ F. J. Simons, M. A. Wieczorek and F. A. Dahlen. Spatiospectral concentration on a sphere. SIAM Review, 2006, doi:10.1137/S0036144504445765
  28. ^ F. J. Simons and Dahlen, F. A. Spherical Slepian functions and the polar gap in Geodesy. Geophysical Journal International, 2006, doi:10.1111/j.1365-246X.2006.03065.x
  29. ^ F. A. Dahlen和F. J. Simons. Spectral estimation on a sphere in geophysics and cosmology. Geophysical Journal International, 2008, doi:10.1111/j.1365-246X.2008.03854.x

外部連結

编辑