马尔可夫过程
此条目可参照英语维基百科相应条目来扩充。 |
在概率论及统计学中,马尔可夫过程(英语:Markov process)是一个具备了马尔可夫性质的随机过程,因为俄国数学家安德雷·马尔可夫得名。马尔可夫过程是不具备记忆特质的(memorylessness)。换言之,马尔可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是独立、不相关的[1]。
具备离散状态的马尔可夫过程,通常被称为马尔可夫链。马尔可夫链通常使用离散的时间集合定义,又称离散时间马尔可夫链[2]。有些学者虽然采用这个术语,但允许时间可以取连续的值[3]。
概论
编辑可数或有限的状态空间 | 连续或一般的状态空间 | |
---|---|---|
离散时间 | 在可数且有限状态空间下的马尔可夫链 | Harris chain (在一般状态空间下的马尔可夫链) |
连续时间 | Continuous-time Markov process | 任何具备马尔可夫性质的连续随机过程,例如维纳过程 |
数学模型
编辑对于某些类型的随机过程,很容易通过状态定义列方程推导出是否具有马尔可夫性质,但对于另外一些,需要使用马尔可夫性质中描述的一些更加复杂的数学技巧。举一个简单的例子,设某个随机过程他的状态X可取到一个离散集合中的值,该值随时间t变化,可将该值表示为X(t)。在这里,时间变量是离散或连续不影响讨论的结果。考虑任意一个“过去的时间”集合(...,p2, p1), 任何“当前时间”s, 以及任何“未来时间” t, 同时所有这些时间全都在X的取值范围之内,若有
则马尔可夫性质成立, 并且该过程为马尔可夫过程, 如果式
对于所有的取值( ... ,x(p2), x(p1), x(s), x(t) ), 以及所有的时间集合成立。 则可用条件概率计算得出
与任何过去的取值( ... ,x(p2), x(p1) )不相关,这恰好就是所谓的未来的状态与任何历史的状态无关,仅与当前状态相关。
二阶马尔可夫过程
编辑在某些情况下,如果将“现在”和“未来”的概念扩展,某些明显的非马尔可夫过程仍然可能具有某些马尔可夫过程的性质。举例来说,令X是一个非马尔可夫过程,现在构造一个过程Y,使其每个状态对应于X的一个时段的状态。从而有如下形式:
如果Y具有马尔可夫性质,则称X为二阶马尔可夫过程,据此也可定义更高阶马尔可夫过程。一个高阶马尔可夫过程的例子是移动平均的时间序列
马尔可夫性质
编辑马尔可夫性质是概率论中的一个概念。当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态;换句话说,在给定现在状态时,它与过去状态(即该过程的历史路径)是条件独立的,那么此随机过程即具有马尔可夫性质。具有马尔可夫性质的过程通常称之为马尔可夫过程。
数学上,如果 为一个随机过程,则马尔可夫性质就是指
马尔可夫过程通常称其为(时间)齐次,如果满足
除此之外则被称为是(时间)非齐次的。齐次马尔可夫过程通常比非齐次的简单,构成了最重要的一类马尔可夫过程。
某些情况下,明显的非马尔可夫过程也可以通过扩展“现在”和“未来”状态的概念来构造一个马尔可夫表示。设 为一个非马尔可夫过程。我们就可以定义一个新的过程 ,使得每一个 的状态表示 的一个时间区间上的状态,用数学方法来表示,即,
如果 具有马尔可夫性质,则它就是 的一个马尔可夫表示。 在这个情况下, 也可以被称为是二阶马尔可夫过程。更高阶马尔可夫过程也可类似地来定义。
参考文献
编辑- ^ Markov process (mathematics) (页面存档备份,存于互联网档案馆) - Britannica Online Encyclopedia
- ^ Everitt,B.S. (2002) The Cambridge Dictionary of Statistics. CUP. ISBN 0-521-81099-x
- ^ Dodge, Y. The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9