1,4-戊二炔
1,4-戊二炔是化学式C5H4的炔烃,和1,3-戊二炔是异构体。
1,4-戊二炔 | |
---|---|
IUPAC名 Penta-1,4-diyne | |
识别 | |
CAS号 | 24442-69-1 |
PubChem | 141112 |
ChemSpider | 124473 |
SMILES |
|
InChI |
|
InChIKey | MDROPVLMRLHTDK-UHFFFAOYSA-N |
性质 | |
化学式 | C5H4 |
摩尔质量 | 64.09 g·mol−1 |
外观 | 无色液体[1] |
熔点 | −21 °C(252 K)([1]) |
沸点 | 61-64 °C(334-337 K)([2]) |
折光度n D |
1.4283(23 °C)[2] |
结构 | |
偶极矩 | 0.516 D |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
制备
编辑虽然之前已成功合成更长的炔烃和更复杂的1,4-二炔衍生物,但直到1960年代末都没有成功合成1,4-戊二炔。[3]通过乙炔钠或乙炔基溴化镁和炔丙基溴的反应合成1,4-戊二炔的尝试都失败了,[4]反应产物主要是重排产生的1,3-戊二炔。[1]
1,4-戊二炔的首次成功合成是由炔丙基溴和含乙炔基的格氏试剂在氯化亚铜存在下于THF中反应而成。[1][2]
1979年,Verkruijsse和Hasselaar发表了改进了的制备方法。在这个方法中,氯化亚铜改成了溴化亚铜,而炔丙基溴改成了对甲苯磺酸炔丙酯。这个反应的反应温度更低,副产物较少。[2]
此外,3-乙炔基-1-环丙烯在550 °C的真空闪热解也会产生1,4-戊二炔和副产物1,2-戊二烯-4-炔。[5]环戊二烯二基的紫外线光解也可以产生1,4-戊二炔。[6]
性质
编辑1,4-戊二炔的两个三键的p轨道会排斥中间碳的sp3轨道,使得它不稳定3.9 kcal · mol−1。[10]根据QCSID(T)计算,它的能量比1,3-戊二炔高了25 kcal · mol−1。[11]
虽然微波光谱表明除了0.516 D的偶极矩外,1,4-戊二炔中心碳的四面体形结构没有显著扭曲,但在整个π系统中有三个不同的电离能值。[12]
用处
编辑参考资料
编辑- ^ 1.0 1.1 1.2 1.3 D. A. Ben-Efraim, F. Sondheimer. The synthesis and some reactions of a series of "skipped" polyacetylenes containing terminal acetylene groups. Tetrahedron. 1969, 25 (14): 2823–2835. doi:10.1016/0040-4020(69)80026-8.
- ^ 2.0 2.1 2.2 2.3 H. D. Verkruijsse, M. Hasselaar. An Improved Synthesis of 1,4-Diynes. Synthesis. 1974, 4 (4): 292–293. doi:10.1055/s-1979-28653.
- ^ H. Taniguchi, I. M. Mathai, S. I. Miller. Synthesis and spectral properties of 1,4- and 1,3-pentadiynes. Tetrahedron. 1966, 22 (3): 867–878. doi:10.1016/0040-4020(66)80058-3.
- ^ J. M. Todd. Attempted preparation of 1, 4-pentadiyne (学位论文). Boston University. 1961. hdl:2144/18627.
- ^ Michael M. Haley, Bluegrass Biggs, Will A. Looney, Robert D. Gilbertson. Synthesis of Alkenyl- and Alkynylcyclopropenes. Tetrahedron Lett. 1995, 36 (20): 3457–3460. doi:10.1016/0040-4039(95)00634-O.
- ^ G. Maier, J. Endres. Photochemistry of matrix-isolated cyclopentadienylidene revisited. J. Mol. Struct. 2000, 556 (1–3): 179–187. doi:10.1016/S0022-2860(00)00631-1.
- ^ Fangtong Zhang , Seol Kim, Ralf I. Kaiser. A crossed molecular beams study of the reaction of the ethynyl radical (C2H(X2Σ+)) with allene (H2CCCH2(X1A1)). Phys. Chem. Chem. Phys. 2009, 11 (23): 4707–4714. PMID 19492123. doi:10.1039/B822366A .
- ^ F. Stahl, P. v. R. Schleyer, H. F. Schaefer III, R. I. Kaiser. Reactions of ethynyl radicals as a source of C4 and C5 hydrocarbons in Titan's atmosphere. Planet. Space Sci. 2002, 50 (7–8): 685–692. doi:10.1016/S0032-0633(02)00014-4.
- ^ Fabien Goulay, Satchin Soorkia, Giovanni Meloni, David L. Osborn, Craig A. Taatjes, Stephen R. Leone. Detection of pentatetraene by reaction of the ethynyl radical (C2H) with allene (CH2=C=CH2) at room temperature. Phys. Chem. Chem. Phys. 2011, 13 (46): 20820–20827. PMID 22002654. doi:10.1039/C1CP22609F.
- ^ Donald W. Rogers, Nikita Matsunaga, Frank J. McLafferty, Andreas A. Zavitsas, Joel F. Liebman. On the Lack of Conjugation Stabilization in Polyynes (Polyacetylenes). J. Org. Chem. 2004, 69 (21): 7143–7147. PMID 15471463. doi:10.1021/jo049390o.
- ^ Nils Hansen, Stephen J. Klippenstein, James A. Miller, Juan Wang, Terrill A. Cool, Matthew E. Law, Phillip R. Westmoreland, Tina Kasper, Katharina Kohse-Höinghaus. Identification of C5Hx Isomers in Fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculations. J. Phys. Chem. A. 2006, 110 (13): 4276–4388. PMID 16571041. doi:10.1021/jp0569685.
- ^ Robert L. Kuczkowski, Frank J. Lovas, R. D. Suenram. The microwave spectrum, structure and dipole moment of 1,4-pentadyine. J. Mol. Struct. 1981, 72: 143–152. doi:10.1016/0022-2860(81)85014-4. hdl:2027.42/24440.
- ^ Arthur J. Ashe III. The group 5 heterobenzenes. Acc. Chem. Res. 1978, 11 (4): 153–157. doi:10.1021/ar50124a005.
- ^ Arthur J. Ashe III, Woon-Tung Chan. Preparation of 2-substituted arsabenzes. J. Org. Chem. 1979, 44 (9): 1409–1413. doi:10.1021/jo01323a010.