数学分析和有关的数学领域中,如果一个集合在某种意义上有有限大小,则称为有界。反过来说,不是有界的集合就叫做无界

(顶上的)有界集合和(底下的)无界集合的示意图。底下的这个集合一直向右延续。

定义

编辑

如果存在一个实数  ,使得对于所有   中的   实数集合   被称为“上有界”的,这个数   被称为  上界。可用类似的定义术语“下有界”和下界

如果集合   有上界和下界二者,则它是有界的。所以,如果一个实数集合包含在有限区间内,则它是有界的。

度量空间

编辑

度量空间  子集  有界的,如果它包含在有限半径的内,就是说如果对于所有   中的  ,存在   中的   并且  ,使得    是有界度量空间(或   是有界度量),如果   作为自身的子集是有界的。

  • 完全有界性蕴涵有界性。对于   的子集下列二者是等价的。
  • 度量空间是紧致的,当且仅当它是完备的并且是完全有界的。
  • 欧几里得空间   的子集是紧致的,当且仅当它是闭集并且是有界的。

拓扑向量空间内的有界性

编辑

拓扑向量空间中,存在一个有界集合的不同定义,通常叫做冯·诺伊曼有界性。如果拓扑向量空间的拓扑是由均匀度量所诱导,如度量是由赋范向量空间范数所诱导的情况,则这两个定义是一致的。

序理论中的有界性

编辑

一个实数集合是有界的,当且仅当它有上界和下界。这个定义可扩展到任何偏序集合的子集。注意这个更一般的有界性概念不对应于“大小”的概念。

对于偏序集合   的子集  ,如果   中的所有元素  ,都小于   中的某个元素  ,也就是对于所有  ,其中  ,则称S上有界的(bounded above),而元素   称为  上界。同理可定义下有界下界。(参见上界和下界。)

偏序集合   的子集   叫做有界的,如果它有上界和下界二者,或等价的说,它被包含在一个区间内。注意这不是集合   自己的一个性质,而是集合   作为   的子集的性质。

有界偏序集合  (就是说自身就是有界而不是作为子集)是有最小元素最大元素的偏序集合。注意这个有界性的概念与有限大小无关,有界偏序集合   的子集    的次序(的限制)下也不必然是有界偏序集合。

  的子集   是关于欧几里得距离有界的,当且仅当它在乘积序英语Product order下作为   的子集是有界的。但是,  可以是在字典序下有界,而不关于欧几里得距离有界。

序数的类被称为是无界的,或共尾的,在给定任何序数的时候,总是有这个类的某个成员大于它。所以在这种情况下,“无界”不意味着自身是无界的而是作为序数类的子类是无界的。

参见

编辑