杨表
在数学中,杨表(英语:Young tableau),又称杨氏矩阵,是组合表示理论和舒伯特演算领域的常用工具。在对称群和一般线性群性质的研究中,杨表提供了一个方便的方式来描述的它们的群表示。杨表由剑桥大学数学家阿尔弗雷德·杨 在 1900 年提出[1][2]。接着于 1903 年被弗罗贝尼乌斯应用于对称群的研究中。他们的理论由许多数学家进一步发展,包括珀西·麦克马洪、威廉·瓦伦斯·道格拉斯·霍奇、G. de B. Robinson、吉安-卡洛·罗塔、Alain Lascoux、Marcel-Paul Schützenberger 和理查德·P·史丹利 等。
定义
编辑注意:本条目使用英式画法来展示杨图及杨表。
杨图
编辑杨图由有限多个相邻的方格排列而成,其中,各横行的左边对齐,长度由下而上递增。有时会用其他的符号代替方块,特别的。当使用圆点代替,该图被称作费瑞尔图。若将杨图的各行的方格数列出,则形成总方格数 n 的一个整数分拆 λ。因此,此图可以被视为是 λ 的形状,因为它和 λ 携带了相同的资讯。杨图之间的包含关系定义出整数分拆上的一个偏序关系,此关系拥有格的结构,称作杨氏方格。若将杨图的各列的方格数列出,会形成整数分拆 λ 的“共轭分拆”,或称“转置分拆”,它所对应到的杨图可由原本的杨图沿主对角线作镜射对称而得。
给定一个杨图,各方格的位置由两个座标决定,分别是行数与列数,列的顺序是由左往右数,行的顺序则是按照所包含的方格数由多的往少的方向数,此处牵涉到杨图的两种常见画法。第一种画法常用于法语世界,将各行由大到小一层一层往上叠,称为法式画法,第二种画法常用于英语世界,将方格数较少的行排在方格数较多的行的下方,称为英式画法。例如,在伊恩·G·麦唐诺著作《对称函数与赫尔多项式》[3]建议习惯法式画法的读者将书放在镜子中上下颠倒来看。英式画法的思维与矩阵雷同,而法式画法则比较接近笛卡尔坐标系,不过,法式画法中对于方格的位置习惯先写纵坐标。例如,右图表示的,是 10 的整数分拆 (5, 4, 1) 对应的杨图,而它的共轭分拆 (3, 2, 2, 2, 1) 则代表着各列的方格数。
勾长、臂长和腿长
编辑在许多理论及应用中,勾长扮演非常重要的角色。给定一个整数分拆 λ,以及 λ 中的一个方格 □,其“臂长” aλ(□) 定义成 □ 正右方的方格数,“腿长” lλ(□) 正下方的方格数 (腿长的名称来源自英式画法) ,“勾长” hλ(□) 定义为 aλ(s)+lλ(s)+1。
杨表
编辑一个杨表是将杨图中的各个方格填入一些元素,一般会填入全序集合的元素。原本,填入的元素应该要写作 x1, x2, x3 ...,但为了方便起见,都直接填入正整数。杨表最初应用于对称群的表示理论时,允许在杨图的 n 的方格中任意填入 1 到 n 中相异的正整数。不过现在的研究大多集中在“标准”的杨表,也就是上述的条件再加上各行与各列中的方格中的数字皆为严格递增的。由 n 个方格的相异杨表数个数形成对和数
在其他的应用中,杨图被允许填入相同的数字。若其填法满足同一列中的数字严格递增,且同一行中的数字单调递增,则该杨表被称为是“半标准的”,或有时特别称为列严格的以避免定义上的歧异。将杨表中个数字出现的次数记录下来,可得一序列,该序列被视为杨表的“权重”。因此,标准杨表的权重必然是 (1,1,...,1),因为在标准杨表中,1 到 n 的正整数恰好各出现一次。
变体
编辑半标准杨表有许多变体,例如行严格杨表要求同一行中的数字严格递增,且同一列中的数字单调递增,也就是列严格杨表的共轭。此外,在平面分拆的理论中,往往习惯考虑将上述的定义中的递增改为递减。其他变体例如带状杨表,其定义为在先将一些方块打包成群,然后要求各群的方块必须填入相同数字。
斜杨表
编辑给定两个杨图 λ=(λ1, λ2 ...)、μ=(μ1, μ2 ...),满足 λ 包含 μ,即 μi≤λi 对所有 i。定义“斜杨图” λ/μ 为 λ 中的所有方格扣掉 μ 中的所有方格,也就是 λ 差集 μ,在斜杨图的各方格中填入元素则形成“斜杨表”。同理,若满足同一列中的数字严格递增,且同一行中的数字单调递增,则该斜杨表被称作半标准的;若半标准的斜杨表满足各方格不重复的填入数字 1 到 n,其中 n 是斜杨表所含的方格数,则该斜杨表被称作标准的。注意到不同的 λ 和 μ 可以给出相同的 λ/μ,而且大部分斜杨表的性质都只依赖于差集完的方格,但是仍然有作用在斜杨表运算依赖于 λ 和 μ 的选取。因此,λ/μ 必须被视为包含两个资讯:λ 和 μ,纵使两个斜杨表有相同形状的方格排列,方格中填入的元素也相同,他们仍然可能是不同的。当 μ 是空分拆 (0 的唯一一种分拆) 时,斜杨表 λ/μ 就变成杨表 λ。
一个标准的斜杨表 λ/μ 可以被视为一个整数分拆的序列,起始于 μ,每次增加一个方格,最后一个是 λ,更精确一点来说,该序列第 i 个分拆是 μ 联集所有的方格满足它里面的数字 ≤i。若 λ/μ 只是半标准的,仍可被视为是一个整数分拆的序列,但每次增加的方格数可能多于一个,根据半标准杨表的定义,在同一列中每次至多增加一个方格,而这个形状被称作“水平条”。该序列完全决定了 λ/μ 与各方格填入的数字,所以也有作者以此来当作(半)标准杨表的定义,例如伊恩·G·麦唐诺[3]。此定义包含了 λ、μ 和所有方格中的资讯。
杨表应用的概述
编辑杨表经常应用于在组合学、表示理论和代数几何中,各种不同的计算杨表个数的方法给出舒尔函数的定义以及相关的恒等式。此外,许多关于杨表的组合算法已经被发现了,例如 Schützenberger 提出的 jeu de taquin 以及 RSK 对应。Lascoux 和 Schützenberger 研究一个定义在半标准杨表上面的乘积,该乘积满足结合律,并且给出一个称为 le monoïde plaxique (法语) 的结构。
在表示理论的应用
编辑给定一个杨表πλ ,一共有n个方格。那么把1到n这n个数字填到这个杨表中,使得每行从左到右都是递增的,每列从下到上也是递增的。用 dimπλ 表示这样的方法个数,如图,这个这种填写数字中的一种。我们有下面的勾长公式。
勾长
编辑对于杨表中的一个方格v,其勾长 hook(v)等于同行右边的方格数加上同列上面的方格数,再加上1(也就是他自己)。
勾长公式
编辑用 dimλ表示这样的方法个数,勾长公式就是方法个数等于n!除以所有方格的勾长的乘积。
对于分拆10 = 5 + 4 + 1 的应的杨表. 因此有
种方法。
参考资料
编辑- ^ Knuth, Donald E., The Art of Computer Programming, Vol. III: Sorting and Searching 2nd, Addison-Wesley: 48, 1973,
Such arrangements were introduced by Alfred Young in 1900
. - ^ Young, A., On quantitative substitutional analysis, Proceedings of the London Mathematical Society, Ser. 1, 1900, 33 (1): 97–145, doi:10.1112/plms/s1-33.1.97. See in particular p. 133.
- ^ 3.0 3.1 Macdonald, Ian. Symmetric Functions and Hall Polynomials (PDF). Oxford University Press. 12月22日: 2, 4 [2019-01-27]. ISBN 978-0198739128. (原始内容 (PDF)存档于2019-01-28).