测量尺度
测量尺度(scale of measure)或称度量水平(level of measurement)、测量标尺,若为定性度量,可称度量类别,是统计学和定量研究中,对不同种类的数据,依据其尺度水平所划分的类别;这些尺度水平分别为:名目(nominal)、次序(ordinal)、等距(interval)、等比(ratio)[1]。
综览
编辑名称 | 又称 | 可用的逻辑与数学运算方式 | 举例 | 集中趋势的计算 | 离散趋势的计算 | 定性或定量 |
---|---|---|---|---|---|---|
名目 | 名义、类别 | 等于、不等于 | 二元名目:性别(男、女)
二元名目:出席状况(出席、缺席) |
众数 | 无 | 定性 |
次序 | 顺序、序列、等级 | 等于、不等于 大于、小于 |
多元次序:服务评等(杰出、好、欠佳) 多元次序:教育程度(小学、初中、高中、学士、硕士、博士等) |
众数、中位数 | 分位数 | 定性 |
等距 | 间隔、间距、区间 | 等于、不等于 大于、小于 加、减 |
温度、年份、纬度、满意程度(0-10)等 | 众数、中位数、算术平均数 | 分位数、全距 | 定量 |
等比 | 比率、比例 | 等于、不等于 大于、小于 加、减 乘、除 |
价格、年龄、高度、绝对温度、分数、绝大多数物理量 | 众数、中位数、算术平均数、几何平均数、调和平均数等 | 分位数、全距、标准差、变异系数等 | 定量 |
名目尺度
编辑例如,对一个气球的颜色进行测量,其可能的结果为红,黄,绿等不同的颜色类。同理,一个人的性别也是一个名目尺度,因为该变量只能在“男”或者“女”中选值。
名目尺度只能用来比较相等或者不相等,而不能比较大小,更不能用来进行四则算术运算。以性别为例,两个人的性别只能用相同与否来区分,而讨论“谁的性别大”,或者“两个人性别的和是多少”等问题是没有意义的。
次序尺度
编辑次序尺度也用来描述一个对象的类别,但与名目尺度不同的是,次序尺度的类别有一定的顺序或大小。次序尺度的变量之间除比较是否相等外,还可以比较大小。但是,加减乘除的运算仍然不能用在次序尺度中。例如,一场比赛中选手的名次(第一,第二,第三等等)就是一个次序变量。我们可以比较两个选手的名次谁较前面,但我们不能比较第一名和第二名的差距比第二名和第三名的差距哪个更大。
等距尺度
编辑等距尺度具有次序尺度所有的特性。除了能比较大小外,等距尺度测量值之间的差别也可以比较大小。等距尺度测量值可以相加和相减,其结果仍然有意义。另一方面,由于等距尺度的原点是任意选取的,所以乘法和除法运算的结果不唯一,因而是没有意义的。年份、摄氏温度、华氏温度就是等距尺度。
等比尺度
编辑也称比率尺度。等比变量具有等距变量的所有特点,同时它也允许乘除运算。大多数物理量,如质量,长度、绝对温度或者能量等等都是等比尺度。等比尺度可以用众数,中位数,算术平均数和几何平均数来描述。
只有等距尺度和等比尺度有计量单位(units of measurement)。
参考文献
编辑- ^ Gravetter, Frederick J.,. Statistics for the behavioral sciences Edition 10. Boston, MA. ISBN 1305504917. OCLC 936116794.