科学建模是一种借由已被广泛接受的科学以帮助我们了解定义量化视觉化仿真的科学活动。依据不同需求,在真实世界中萃取相关要素以建立适合的科学模型,像是借由概念模型以帮助我们了解现象,操作模型以给出操作型定义数学模型以帮助量化,并且用图象模型视觉化抽象概念。

科学建模的例子。 A schematic of chemical and transport processes related to atmospheric composition.

建模是许多科学领域中的非常重要且不可分割的一部分,并且每种科学领域都有其特定的科学模型[1][2]。以约翰·冯·诺伊曼所说过的一段话为例[3]

... 科学本身从来都不曾试图去解释自然现象,甚至是连诠释自然现象的企图都不曾有过,反而仅仅是建立模型。所谓的模型,就是——在数学意义上——去建构观察到的自然现象之间的数学关系。而此模型令人信服的唯一理由,就仅仅是因为它确实有用——能够描述足够广泛的自然现象。

科学建模已逐渐在受重视[4],例如在科学教育[5]科学哲学系统理论视觉化 (电脑图学)。科学建模也有其相关的科学方法、技术与形而上学等议题。

参考文献

编辑
  1. ^ Cartwright, Nancy. 1983. How the Laws of Physics Lie页面存档备份,存于互联网档案馆. Oxford University Press
  2. ^ Hacking, Ian. 1983. Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press
  3. ^ von Neumann, J. (1995), "Method in the physical sciences", in Bródy F., Vámos, T. (editors), The Neumann Compendium, World Scientific, p. 628; previously published in The Unity of Knowledge, edited by L. Leary (1955), pp. 157-164, and also in John von Neumann Collected Works, edited by A. Taub, Volume VI, pp. 491-498.
  4. ^ Frigg and Hartmann (2009) state: "Philosophers are acknowledging the importance of models with increasing attention and are probing the assorted roles that models play in scientific practice". Source: Frigg, Roman and Hartmann, Stephan, "Models in Science", The Stanford Encyclopedia of Philosophy (Summer 2009 Edition), Edward N. Zalta (ed.), (source页面存档备份,存于互联网档案馆))
  5. ^ Namdar, Bahadir; Shen, Ji. Modeling-Oriented Assessment in K-12 Science Education: A synthesis of research from 1980 to 2013 and new directions. International Journal of Science Education. 2015-02-18, 37 (7): 993–1023. ISSN 0950-0693. doi:10.1080/09500693.2015.1012185.