CGI (围棋软件)
CGI(英语:CGI Go Intelligence[2][1])是由国立交通大学信息工程学系吴毅成教授所带领的团队所开发的围棋软件。
原作者 |
|
---|---|
开发者 | 国立交通大学信息工程系电脑游戏与智能实验室 |
类型 | 围棋软件 |
网站 |
简介
编辑从2008年开始发展,一开始名称为HappyGo,之后大幅改写时改名为Amigo,但因Amigo与其他围棋软件名称冲突,在后来改名时以实验室的名字为基础,改名为CGI并使用至今[1]。其中CGI为CGI Go Intelligence的递归缩写,指的是“CGI实验室围棋智能”[2][1]。
演进
编辑HappyGo
编辑2008年到2011年的版本,以作者王永乐的昵称Happy为名,仅支持9x9的棋盘[1]:
Amigo
编辑2012年到2014年的版本,这个版本将蒙特卡洛树搜索(MCTS)的平行运算框架化,以便于用在其他软件上[1]。这个版本虽然可以进行19x19棋盘对弈,但只是实做而没有优化,所以非常的弱[1]:
- 实做蒙特卡洛树搜索(MCTS)的平行运算框架。
- 支持平行运算。
CGI 1.0
编辑2015年一月到十二月的版本,除了采用了蒙特卡洛树搜索(MCTS)外,还包括了MM algorithm[2][1]:
- 利用很多人为定义的特性进行学习。
- 利用progressive bias、progressive widening以及动态贴目改善蒙特卡洛树搜索(MCTS)。
CGI 2.0
编辑2015年十二月到2016年八月的版本,这个版本引入了深度卷积神经网络(DCNN)使得棋力大幅增强。在引入的初期采用Detlef Schmicker所提供的资料,在2016一月后采用自己训练的资料[2][1]:
- 使用监督式学习策略神经网络(英语:Supervised Learning policy network),这个版本还没有使用强化学习策略策略神经网络(英语:Reinforcement Learning policy network)以及价值神经网络(英语:Value Network)。
CGI 3.0
编辑2016年八月后的版本,在这个版本因为AlphaGo论文的出现而有了巨大的改动,使得实力大幅进步,能在不让子的对弈中与职业棋士较劲[2][1]:
- 引入监督式学习策略神经网络(英语:Supervised Learning policy network)
- 引入强化学习策略神经网络(英语:Reinforcement Learning policy network)
- 引入价值网络(英语:Value Network)[4]
- 改善蒙特卡洛树搜索(MCTS)内的快速走子(英语:Rollout)
- 支持分布式计算
CGI 4.0
编辑2018年十二月的版本,这个版本能提供四十个稳定棋力等级之围棋程序,最高棋力与ELF OpenGo棋力相当[5]。
成绩
编辑HappyGo
编辑对电脑
编辑- 2009年TAAI,9x9第四名[1]。
- 2010年ICGA,9x9第八名[1]。
- 2010年TAAI,9x9第二名[1]。
- 2011年TAAI,9x9第五名[1]。
- 2013年TCGA,9x9第二名[1]。
Amigo
编辑对电脑
编辑CGI 1.0
编辑对电脑
编辑对人
编辑赛事皆为IEEE CIG 2015:
黑 | 白 | 让子 | 贴目 | 结果 | 备注 |
---|---|---|---|---|---|
CGI | 俞俐均(职业一段) | 6 | 0.5 | B+Res[6][2][1] | |
CGI | Chi Chang(业余5段) | 2 | 0.5 | W+Res[6] | |
CGI | 周俊勋(职业九段) | 6 | 6.5 | W+5.5[6][2][1] | |
CGI | 张凯馨(职业五段) | 6 | 0.5 | W+Res[6][2][1] |
CGI 2.0
编辑对电脑
编辑- 2016年UEC杯世界电脑围棋大会,初赛第一名[7],决赛第六名[8][2][1]。
对人
编辑赛事皆为IEEE WCCI 2016:
黑 | 白 | 让子 | 贴目 | 结果 | 备注 |
---|---|---|---|---|---|
CGI | 周平强(职业六段) | 2 | 0.5 | W+Res[9] | 七月24日 |
CGI | 周俊勋(职业九段) | 2 | 0.5 | W+Res[9][2][1] | |
蔡尚荣(业余六段) | CGI | 2 | 0.5 | B+Res[9] | 七月25日 |
张盛舒(业余六段) | CGI | 2 | 0.5 | B+Res[9] | 七月25日 |
CGI | 周平强(职业六段) | 2 | 0.5 | B+Res[9] | 七月25日 |
蔡尚荣(业余6段) | CGI | 0 | 0.5 | W+Res[9] | 七月26日 |
张盛舒(业余6段) | CGI | 2 | 0.5 | B+Res[9] | 七月26日 |
CGOS
编辑在CGOS上,CGI1407_1_475_7c
的BayesElo为3265分[10]。
CGI 3.0
编辑对电脑
编辑对人
编辑赛事为FUZZ-IEEE 2017:
黑 | 白 | 让子 | 贴目 | 结果 | 备注 |
---|---|---|---|---|---|
CGI | 周俊勋(职业九段) | 0 | 7.5 | B+Res[14][15][2][1] | |
周俊勋(职业九段) | CGI | 0 | 7.5 | W+2.5[14][15][2][1] |
CGOS
编辑参考文献
编辑- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 Introduction to Go Programs Developed at CGI Lab. [2019-12-30]. (原始内容存档于2020-02-11).
- ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 CGI Go Intelligence 介紹. 2017-11-02 [2017-12-22]. (原始内容存档于2019-02-15).
- ^ 特價、界面、AI. 棋城. 2017-12-22 [2017-12-23]. (原始内容存档于2017-12-23).
- ^ [1705.10701] Multi-Labelled Value Networks for Computer Go. 2017-05-30 [2017-12-22]. (原始内容存档于2017-12-23).
- ^ 圍棋終身學習系統 交大CGI計畫團隊之研究發表成果. 2018-12-18 [2019-12-30]. (原始内容存档于2019-12-27).
- ^ 6.0 6.1 6.2 6.3 Human vs. Computer Go Competition @ IEEE CIG 2015. [2017-12-23]. (原始内容存档于2017-07-07).
- ^ First-day results. [2017-12-22]. (原始内容存档于2017-05-17).
- ^ Second-day results. [2017-12-22]. (原始内容存档于2017-05-13).
- ^ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 Human vs. Computer Go Competition @ IEEE WCCI 2016. [2017-12-23]. (原始内容存档于2017-08-01).
- ^ 10.0 10.1 19x19 All Time Ranks. [2018-01-10]. (原始内容存档于2018-01-17).
- ^ 1日目大会結果. [2017-12-22]. (原始内容存档于2017-09-12).
- ^ 2日目大会結果. [2017-12-22]. (原始内容存档于2017-09-22).
- ^ 2017/08/17 台灣 CGI 勇奪首屆世界智能圍棋賽亞軍. 海峰棋院. 2017-08-17 [2017-12-22]. (原始内容存档于2017-12-22).
- ^ 14.0 14.1 Machine Learning for Human Prediction and Application @ FUZZ-IEEE 2017. [2017-12-24]. (原始内容存档于2017-12-24).
- ^ 15.0 15.1 吴, 宛萦. CGI圍棋程式達高段職業棋士水準 擊敗紅面棋王. 今日新闻. 2017-07-13 [2017-12-24]. (原始内容存档于2017-12-25) (中文(台湾)).
相关链接
编辑外部链接
编辑- CGI的Facebook专页,目前的官方信息页面。
- 官方网站。(英文)