实体查尔斯·皮尔士于1880年代开始在定性逻辑的名义下开发的逻辑图形语法的一个要素,只覆盖了逻辑的命题演算方面所关心的内容的形式化。请参见《Peirce's Collected Papers》的 3.468, 4.434, 和 4.564。

语法是:

  • 空白页;
  • 单一的字母,短语;
  • 包围在叫做简单闭合曲线内的对象(子图)。切可以为空。

语义是:

  • 空白页指示
  • 字母,短语,子图和整个图可以为
  • 用切包围对象等价于布尔补运算。因此空切指示真理
  • 在一个给定切内的所有对象都默认的用析取连结起来了。

"证明"使用规则的简短列表操纵一个图,直到这个图被简约到一个空切或空白页。可以如此简约的图现在叫做重言式矛盾。不能简化超过一个特定点的图类似于一阶逻辑可满足公式

皮尔士不久就放弃了实体图而转向存在图,它的句子(alpha)部分是实体图的对偶。他开发了存在图使其成为一阶逻辑正规模态逻辑的另一个形式化。

G. Spencer-Brown初等代数同构于实体图。

引用

编辑
  • Peirce, C.S., Collected Papers of Charles Sanders Peirce, Vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), Vols. 7–8, Arthur W. Burks, ed., Harvard University Press, Cambridge, MA, 1931–1935, 1958. Cited as CP volume.paragraph.
  • Peirce, C.S., "Qualitative Logic", MS 736 (c. 1886), pp. 101–115 in The New Elements of Mathematics by Charles S. Peirce, Volume 4, Mathematical Philosophy, Carolyn Eisele (ed.), Mouton, The Hague, 1976.
  • Peirce, C.S., "Qualitative Logic", MS 582 (1886), pp. 323–371 in Writings of Charles S. Peirce: A Chronological Edition, Volume 5, 1884–1886, Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1993.
  • Peirce, C.S., "The Logic of Relatives: Qualitative and Quantitative", MS 584 (1886), pp. 372–378 in Writings of Charles S. Peirce: A Chronological Edition, Volume 5, 1884–1886, Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1993.
  • Shin, Sun-Joo (2002), The Iconic Logic of Peirce's Graphs, MIT Press, Cambrodge, MA.

参见

编辑