费雪变换(英语:Fisher transformation)是统计学中用于相关系数假设检验的一种方法。对样本相关系数进行费雪变换后,可以用来检验关于总体相关系数ρ的假设。[1][2]

费雪变换

定义

编辑

已知N组双变量样本(XiYi), i = 1, ..., N,样本相关系数r

 

于是,r的费雪变换可定义为

 


(XY)二元正态分布(XiYi)对相互独立时,z近似为正态分布。其均值为

 

标准差

 

其中N是样本大小,ρ是变量XY的总体相关系数。

费雪变换及其逆变换

 

可以用于构造ρ置信区间

参考文献

编辑
  1. ^ Fisher, R.A. Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika (Biometrika Trust). 1915, 10 (4): 507–521. JSTOR 2331838. doi:10.2307/2331838. 
  2. ^ Fisher, R.A. On the `probable error' of a coefficient of correlation deduced from a small sample (PDF). Metron. 1921, 1: 3–32 [2015-09-03]. (原始内容存档 (PDF)于2021-02-12).