Rayleigh-Plesset方程式
在流体力学中,Rayleigh–Plesset方程 是一个用来描述在无限体积的液体中球型气泡的动力学特征的常微分方程。[1][2][3][4] 它以瑞利男爵(John Strutt, 3rd Baron Rayleigh)和 Milton S. Plesset命名。 它通常被写作
其中
若 已知并且 的值被给出, Rayleigh–Plesset方程可以用作解决随时间变化的气泡半径的长度 .
历史
编辑这个方程最早是由 W. H. Besant 在 1859 年推倒出来的。一个没有作用力的均匀不可压缩流体处于静止状态,忽略表面张力和黏性,而流体间突然产生一球型气泡。距离气泡中心无限远的压力应该保持不变。考虑到气泡内的压力变化, Besant 预测填充空腔所需的时间。
约翰·斯特拉特(第三代瑞利男爵)于 1917 从能量平衡得出了方程式。瑞利也意识到,随著半径的减小,气泡内压力为定值的假设是错误的,使用波义耳定律指出,如果气泡的体积减小了一半,压力会增加一倍,气泡边界附近的压力将大于环境压力。1949 年,Milton S. Plesset 第一次应用于气泡现象。
参考来源
编辑- ^ Rayleigh, Lord. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 1917, 34: 94–98. doi:10.1080/14786440808635681.
- ^ Plesset, M.S. The dynamics of cavitation bubbles. ASME J. Appl. Mech. 1949, 16: 228–231.
- ^ Leighton, T. G. Derivation of the Rayleigh–Plesset equation in terms of volume. Southampton, UK: Institute of Sound and Vibration Research. 17 April 2007 [2017-11-01]. (原始内容存档于2017-11-07).
- ^ 4.0 4.1 Lin, Hao; Brian D. Storey; Andrew J. Szeri. Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation. Journal of Fluid Mechanics. 2002, 452 [2020-09-26]. ISSN 0022-1120. doi:10.1017/S0022112001006693. (原始内容存档于2019-06-08).