幾何學中,十胞體是指有十個胞或維面的多胞體。當一個十胞體的所有胞或維面都是正圖形且都全等且每個頂點也都相等時,則該十胞體稱為正十胞體。四維或四維以上的空間僅有兩個維度存在正十胞體,也就是說正十胞體一共有兩種,位於五維[1]和九維空間中,他們分別是五維的超立方體[2][3]和九維的單純形[4]

十胞體
部分的十胞體
三角七角柱體柱
三角七角柱體柱
四維
五維超立方體
五維超立方體
五維
三角錐柱體柱的五維錐體
三角錐柱體柱的五維錐體
五維
正十胞體
正十胞體
九維英語Uniform 9-polytope

四維十胞體

編輯

在四維空間中,十胞體由10個多面體組成,雖然沒有正十胞體,但存在許多半正多胞體,其中包括了三種柱體柱[5]、兩種四維柱體[6][7][8]和三個經過一次康威變換的半正多胞體[9]

名稱 考克斯特
施萊夫利
圖像 展開圖
截半正五胞體        
     
t1{3,3,3} or r{3,3,3}
{32,1}
5個正四面體 
5個正八面體 
   
截角正五胞體        
t0,1{3,3,3}
t{3,3,3}
5個正四面體 
5個截角四面體 
   
過截角正五胞體        
   
t1,2{3,3,3}
2t{3,3,3}
10個截角四面體 [10]    
截角四面體柱體英語Truncated_tetrahedral_prism        
t0,1{3,3}×{}
2個截角四面體 
4個三角柱 
4個六角柱 
   
正八面體柱體英語Octahedral prism        
       
       
       
t0,3{3,4,2} or {3,4}×{}
t1,3{3,3,2} or r{3,3}×{}
s{2,6}×{}
sr{3,2}×{}
2個正八面體 
8個三角柱 
   
三角七角柱體柱         3個七角柱 
7個三角柱 
     
四角六角柱體柱         4個六角柱 
6個立方體 
     
五角五角柱體柱         10個五角柱     

五維十胞體

編輯

在五維空間中,十胞體為由10個四維多胞體所組成的多胞體,而由十個超立方體所組成的十胞體稱為五維超正方體[11]。此外亦存在許多半正的十胞體,例如立方體錐體的五維錐,其他亦有許多凸十胞體,例如三角錐柱體柱的五維錐。

名稱 考克斯特
施萊夫利
圖像 展開圖
五維超正方體 {4,3,3,3}
         
10個超立方體     
三角錐柱體柱
的五維錐體
3個三角錐柱的四維錐體 
4個三角柱的四維錐體
3個四角柱的四維錐體
 

六維十胞體

編輯

在六維空間中,十胞體為由10個五維多胞體所組成的多胞體,例如五維八胞體的六維柱和五維九胞體的六維錐等。

七維以上十胞體

編輯

在七維以上十胞體中,僅有一個正十胞體,為九維的單純形,其由十個八維正九胞體組成,可以看做是正九胞體的九維錐體,也是九維空間唯一的單純形。

參見

編輯

參考文獻

編輯
  1. ^ Klitzing, Richard. 5D uniform polytopes (polytera) o3o3o3o4x - pent. bendwavy.org. 
  2. ^ Weisstein, Eric W. (編). Hypercube. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  3. ^ Multi-dimensional Glossary: hypercube頁面存檔備份,存於網際網路檔案館) Garrett Jones
  4. ^ Klitzing, Richard. 9D uniform polytopes (polyyotta) x3o3o3o3o3o3o3o3o - day. bendwavy.org. 
  5. ^ Olshevsky, George, Duoprism at Glossary for Hyperspace.
  6. ^ Klitzing, Richard. 4D uniform polytopes (polychora) x x3o4o - ope. bendwavy.org. 
  7. ^ 6. Convex uniform prismatic polychora - Model 49, George Olshevsky.
  8. ^ Klitzing, Richard. 4D uniform polytopes (polychora) x x3x3o - tuttip. bendwavy.org. 
  9. ^ Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]頁面存檔備份,存於網際網路檔案館
  10. ^ Eppstein, David; Kuperberg, Greg; Ziegler, Günter M., Fat 4-polytopes and fatter 3-spheres, Bezdek, Andras (編), Discrete Geometry: In honor of W. Kuperberg's 60th birthday, Pure and Applied Mathematics 253, Marcel Dekker: 239–265, 2003, arXiv:math.CO/0204007  .
  11. ^ Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)