受控不變子空間
沒有或很少條目連入本條目。 (2018年1月30日) |
受控不變子空間(controlled invariant subspace)是控制理論的名詞。考慮一個以狀態空間表示的系統,其受控不變子空間為滿足以下條件的子空間:若系統一開始的初始狀態在此子空間內,有可能控制系統,讓系統始終在此子空間內。此概念是由Giuseppe Basile和Giovanni Marro所提出的(Basile & Marro 1969)。
定義
編輯考慮用以下微分方程表示的線性系統
此處,x(t) ∈ Rn表示系統的狀態,而u(t) ∈ Rp為輸入。矩陣A and B的大小分別是n × n和n × p。
子空間V ⊂ Rn是受控不變子空間,若針對任意x(0) ∈ V, ,都存在一輸入u(t)使得x(t) ∈ V,對所有非負的t都成立。
性質
編輯子空間V ⊂ Rn是受控不變子空間,若且唯若AV ⊂ V + Im B。若V受控不變子空間,則存在矩陣K使得輸入u(t) = Kx(t),使狀態維持在V以內,這是簡單的回授控制(Ghosh 1985,Thm 1.1)。
參考資料
編輯- Basile, Giuseppe; Marro, Giovanni, Controlled and conditioned invariant subspaces in linear system theory, Journal of Optimization Theory and Applications, 1969, 3 (5): 306–315, doi:10.1007/BF00931370.
- Ghosh, Bijoy K., Controlled invariant and feedback controlled invariant subspaces in the design of a generalized dynamical system, Proceedings of the 24th IEEE Conference on Decision and Control, IEEE: 872–873, 1985, doi:10.1109/CDC.1985.268620.
- Basile, Giuseppe; Marro, Giovanni, Controlled and Conditioned Invariants in Linear System Theory, Englewood Cliffs : Prentice-Hall, 1992.