電傳導德魯德模型在1900年[1] [2]保羅·德魯德提出,以解釋電子在物質(特別是金屬)中的輸運性質。這個模型是分子運動論的一個應用,假設了電子在固體中的微觀表現可以用經典的方法處理,很像一個彈珠台,其中電子不斷在較重的、相對固定的正離子之間來回反彈。

德魯德模型中的電子(藍色)不斷在較重的、靜止的晶體離子中間(紅色)徘徊。

德魯德模型的兩個最重要的結果是電子的運動方程:

以及電流密度電場之間的線性關係:

在這裡,代表時間,分別代表電子的動量、電荷、數密度、質量、以及與離子碰撞之間的平均自由時間。後一個表達式尤其重要,因為它用半定量的術語解釋了為什麼歐姆定律(電磁學中最普遍存在的一個關係)應該是正確的。[3] [4] [5]

解釋

編輯

直流電場

編輯

德魯德模型最簡單的分析,假設了電場 既是均勻的又是恆定的,且電子的熱速度足夠大,使得它們在碰撞之間僅僅積累了無窮小的動量 ,這平均每隔 秒發生一次。[3]

於是,在時間 分離的電子自從它上一次碰撞將平均運動了 秒,因此將積累了動量:

 

在它上一次碰撞期間,這個電子向前面反彈的機會將剛剛與向後面反彈的機會相等,因此所有對電子動量的之前的貢獻都可以忽略,便得到表達式:

 

代入以下關係:

 
 

便得出上面提到的歐姆定律的表述:

 

時變分析

編輯

電子的運動也可以通過引入一個有效的阻力來描述。在時間 ,電子的平均動量將為:

 

由於平均來說, 個電子將不經歷另外一次碰撞,而那些經歷另外一次碰撞的電子將對總的動量僅有可忽略的貢獻。[6]

經過一番計算,便得出以下的微分方程:

 

其中 表示平均動量,m表示有效質量,q表示電子的電荷。這是一個非齊次微分方程,它的通解為:

 

於是,穩態解( )為:

 

像上面一樣,平均動量可以與平均速度有關,而這又可以與電流密度有關:

 
 

於是可以證明,物質滿足歐姆定律,其直流電電導率為 

 

德魯德模型還可以預言在角頻率為 的時變電場的響應下的電流,在這種情況下:

 

這裡假設了

 
 

還存在另一種慣例,所有方程中的 都用 來代替。虛數部分表示電流落後於電場,這是由於電子大約需要時間 來對電場的變化作出響應。這裡德魯德模型是應用於電子的;它既可以應用於電子,又可以應用於空穴,也就是說,半導體中的正電荷載流子。

模型的準確性

編輯

這個簡單、經典的德魯德模型提供了金屬中的直流電和交流電傳導、霍爾效應,以及熱傳導的非常好的解釋。這個模型也解釋了1853年發現的魏德曼-弗朗茨定律。然而,它大大高估了金屬的電子熱容。實際上,金屬和絕緣體在常溫下的熱容大致上相等。雖然模型可以應用於正電荷(空穴)載流子,像霍爾效應所驗證的那樣,它並不預言它們的存在。

德魯德在最初的論文中犯了一個概念性的錯誤,他估計電導率僅有實際值的一半。[7]

參見

編輯

參考文獻

編輯
  1. ^ Drude, Paul. Zur Elektronentheorie der metalle. Annalen der Physik. 1900, 306 (3): 566. [永久失效連結]
  2. ^ Drude, Paul. Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Annalen der Physik. 1900, 308 (11): 369. [永久失效連結]
  3. ^ 3.0 3.1 Neil W. Ashcroft; N. David Mermin. Solid State Physics. Saunders College. 1976: 6–7. ISBN 0-03-083993-9. 
  4. ^ Edward M. Purcell. Electricity and Magnetism. McGraw-Hill. 1965: 117–122. ISBN 978-0070049086. 
  5. ^ David J. Griffiths. Introduction to Electrodynamics. Prentice-Hall. 1999: 289. ISBN 978-81-203-161-0 請檢查|isbn=值 (幫助). 
  6. ^ Neil W. Ashcroft; N. David Mermin. Solid State Physics. Saunders College. 1976: 11. ISBN 0-03-083993-9. 
  7. ^ Neil W. Ashcroft; N. David Mermin. Solid State Physics. Saunders College. 1976: 23. ISBN 0-03-083993-9.