抽樣
在統計學中,抽樣(Sampling)是一種推論統計方法,它是指從目標總體(Population,或稱為母群)中抽取一部分個體作為樣本(Sample),通過觀察樣本的某一或某些屬性,依據所獲得的數據對總體的數量特徵得出具有一定可靠性的估計判斷,從而達到對總體的認識。
基本過程
編輯抽樣過程主要包括以下幾個階段:
總體
編輯目標是所要研究的對象的全體。例如,製造商檢查某個批次的產品質量是否合格,目標總體就是這一批次的產品。抽樣總體是用於從中抽取樣本的總體。按理,抽樣總體應該與目標總體一致,但實踐中時常發生不一致的情況。例如,科學家通過小白鼠試驗來檢測藥物用於人類總體的效果。
抽樣框
編輯在抽樣之前,總體應劃分成抽樣單位,抽樣單位互不重疊且能合成總體,總體中的每個個體只屬於一個單位。抽樣框是一份包含所有抽樣單元的名單。
抽樣方法
編輯簡單隨機抽樣
編輯簡單隨機抽樣(simple random sampling),也叫純隨機抽樣。從總體N個單位中隨機地抽取n個單位作為樣本,使得每一個容量為樣本都有相同的概率被抽中。特點是:每個樣本單位被抽中的概率相等,樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才採用這種方法[1]。
系統抽樣
編輯系統抽樣(systematic sampling),也稱等距抽樣。將總體中的所有單位按一定順序排列,在規定的範圍內隨機地抽取一個單位作為初始單位,然後按事先規定好的規則確定其他樣本單位。先從數字1到k之間隨機抽取一個數字r作為初始單位,以後依次取r+k、r+2k……等單位。這種方法操作簡便,可提高估計的精度。
分層抽樣
編輯分層抽樣(stratified sampling)。將抽樣單位按某種特徵或某種規則劃分為不同的層,然後從不同的層中獨立、隨機地抽取樣本。從而保證樣本的結構與總體的結構比較相近,從而提高估計的精度。
整群抽樣
編輯整群抽樣(cluster sampling)。又稱群集抽樣,將總體中若干個單位合併為組,抽樣時直接抽取群,然後對中選群中的所有單位全部實施調查。抽樣時只需群的抽樣框,可簡化工作量,缺點是估計的精度較差[2]。
抽樣標準
編輯- ISO 2859 series
- ISO 3951 series
- ASTM E105 Standard Practice for Probability Sampling Of Materials
- ASTM E122 Standard Practice for Calculating Sample Size to Estimate, With a Specified Tolerable Error, the Average for Characteristic of a Lot or Process
- ASTM E141 Standard Practice for Acceptance of Evidence Based on the Results of Probability Sampling
- ASTM E1402 Standard Terminology Relating to Sampling
- ASTM E1994 Standard Practice for Use of Process Oriented AOQL and LTPD Sampling Plans
- ASTM E2234 Standard Practice for Sampling a Stream of Product by Attributes Indexed by AQL
- ANSI/ASQ Z1.4
相關書籍
編輯- 胡健穎,孫山澤. 抽樣調查的理論、方法和應用. 北京大學出版社:北京, 2000.6. ISBN 7-301-04547-6.
- 金勇進,蔣妍,李序穎. 抽樣技術. 中國人民大學出版社:北京, 2002.6. ISBN 7-300-04079-9