插入排序(英語:Insertion Sort)是一種簡單直觀的排序算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,通常採用in-place排序(即只需用到的額外空間的排序),因而在從後向前掃描過程中,需要反覆把已排序元素逐步向後挪位,為最新元素提供插入空間。

插入排序
使用插入排序為一列數字進行排序的過程
概況
類別排序算法
資料結構數組
複雜度
平均時間複雜度
最壞時間複雜度
最優時間複雜度
空間複雜度總共 ,需要輔助空間
最佳解No
相關變量的定義
使用插入排序為一列數字進行排序的過程

記載

編輯

最早擁有排序概念的機器出現在1901至1904年間由赫爾曼·何樂禮發明出使用基數排序法的分類機,此機器系統包括打孔,制表等功能,1908年分類機第一次應用於人口普查,並且在兩年內完成了所有的普查數據和歸檔。 赫爾曼·何樂禮在1896年創立的分類機公司的前身,為電腦製表記錄公司(CTR)。他在電腦製表記錄公司曾擔任顧問工程師,直到1921年退休,而電腦製表記錄公司在1924年正式改名為IBM

概述

編輯

Insertion Sort 和打撲克牌時,從牌桌上逐一拿起撲克牌,在手上排序的過程相同。

舉例:

輸入: {5 2 4 6 1 3}。

首先拿起第一張牌, 手上有 {5}。

拿起第二張牌 2, 把 2 insert 到手上的牌 {5}, 得到 {2 5}。

拿起第三張牌 4, 把 4 insert 到手上的牌 {2 5}, 得到 {2 4 5}。

以此類推。

算法

編輯

一般來說,插入排序都採用in-place在數組上實現。具體算法描述如下:

  1. 從第一個元素開始,該元素可以認為已經被排序
  2. 取出下一個元素,在已經排序的元素序列中從後向前掃描
  3. 如果該元素(已排序)大於新元素,將該元素移到下一位置
  4. 重複步驟3,直到找到已排序的元素小於或者等於新元素的位置
  5. 將新元素插入到該位置後
  6. 重複步驟2~5

範例程式碼

編輯

此範例程序以C語言實現。[1]

void insertion_sort(int arr[], int len){
        int i,j,key;
        for (i=1;i!=len;++i){
                key = arr[i];
                j=i-1;
                while((j>=0) && (arr[j]>key)) {
                        arr[j+1] = arr[j];
                        j--;
                }
                arr[j+1] = key;
        }
}

此範例程序以Objective C實現。[1]

- (NSMutableArray *)insertionSort:(NSArray *)array {
    NSMutableArray *sortArray = [array mutableCopy];
    NSNumber *key = @(0);
    int j = 0;
    for (int i = 1; i < sortArray.count; i++) {
        key = array[i];
        j = i - 1;
        while ((j >= 0) && [sortArray[j] integerValue] > [key integerValue]) {
            sortArray[j + 1] = sortArray[j];
            j --;
        }
        sortArray[j + 1] = key;
    }
    return sortArray;
}
# Julia Sample : InsertSort
function InsertSort(A)
  for i=2:length(A)
    key = A[i]
    j=i-1
    while (j>=1)&&(A[j]>key)
      A[j+1]=A[j]
      j-=1
    end
    A[j+1]=key
  end
  return A
end

# Main Code
A = [16,586,1,31,354,43,3]
println(A)               # Original Array
println(InsertSort(A))   # Insert Sort Array

算法複雜度

編輯

如果目標是把n個元素的序列升序排列,那麼採用插入排序存在最好情況和最壞情況。最好情況就是,序列已經是升序排列了,在這種情況下,需要進行的比較操作需 次即可。最壞情況就是,序列是降序排列,那麼此時需要進行的比較共有 次。插入排序的賦值操作是比較操作的次數減去 次,(因為 次循環中,每一次循環的比較都比賦值多一個,多在最後那一次比較並不帶來賦值)。平均來說插入排序算法複雜度為 。因而,插入排序不適合對於數據量比較大的排序應用。但是,如果需要排序的數據量很小,例如,量級小於千;或者若已知輸入元素大致上按照順序排列,那麼插入排序還是一個不錯的選擇。 插入排序在工業級庫中也有着廣泛的應用,在STL的sort算法和stdlib的qsort算法中,都將插入排序作為快速排序的補充,用於少量元素的排序(通常為8個或以下)。

參考文獻

編輯
  1. ^ 1.0 1.1 Cormen, Thomas H. 英語Thomas H. Cormen; Leiserson, Charles E. 英語Charles E. Leiserson; Rivest, Ronald L.; Stein, Clifford. Section 2.1: Insertion sort. Introduction to Algorithms 3rd. MIT Press and McGraw-Hill. 2009: 16–18 [1990]. ISBN 0-262-03384-4. .

延伸閱讀

編輯