浮點數運算
在電腦科學中,浮點數運算(Floating-point arithmetic)是一種用浮點(英語:floating point,縮寫為FP)方式表示實數的運算方式。浮點是一種對於實數的近似值數值表現法,由一個有效數字(即尾數)加上冪數來表示,通常是乘以某個基數的整數次指數得到。以這種表示法表示的數值,稱為浮點數(floating-point number)。浮點數運算運算通常伴隨着因為無法精確表示而進行的近似或捨入。
計算機使用浮點數運算的主因,在於電腦使用二進位制的運算,例如:4÷2=2,4=100(2)、2=010(2),在二進位相當於退一位數,則1.0÷2=0.5=0.1(2),也就是。依此類推二進位的0.01(2)就是十進位==0.25。由於十進位制無法準確換算成二進位制的部分小數,如0.1,因此只能使用近似值的方式表達。
這種表示方法類似於基數為10的科學記數法。在計算機上,通常使用2為基數的冪數來表示,一個浮點數a由兩個數m和e來表示:a = m × be。在任意一個這樣的系統中,可選擇一個基數b(記數系統的基)和精度p(即使用多少位來存儲),m(即尾數)是形如±d.ddd...ddd的p位數(每一位是一個介於0到b-1之間的整數,包括0和b-1)。如果m的第一位是非0整數,m稱作正規化的,有一些描述使用一個單獨的符號位(s 代表+或者-)來表示正負,這樣m必須是正的,e是指數。
這種表示法的設計,來自於對於值的表現範圍,與精密度之間的取捨:可以在某個固定長度的存儲空間內表示出某個實數的近似值,例如: 一個指數範圍為±4的4位十進制浮點數可以用來表示43210,4.321或0.0004321,但是沒有足夠的精度來表示432.123和43212.3(必須近似為432.1和43210)。當然,實際使用的位數通常遠大於4。
此外,浮點數表示法通常還包括一些特別的數值:+∞和−∞(正負無窮大)以及NaN('Not a Number')。無窮大用於數太大而無法表示的時候,NaN則指示非法操作或者無法定義的結果。
其中,無窮大,可表示為inf,在內存中的值是階碼為全1,尾數全0。而NaN在內存中的值則是階碼全1,尾數不全0。
計算機的浮點數
編輯浮點指的是帶有小數的數值,浮點運算即是小數的四則運算,常用來測量電腦運算速度。大部份計算機採用二進制(b=2)的表示方法。位(bit)是衡量浮點數所需存儲空間的單位,通常為32位或64位,分別被叫作單精度和雙精度。有一些計算機提供更大的浮點數,例如英特爾公司的浮點運算單元Intel8087協處理器(以及其被集成進x86處理器中的後代產品)提供80位長的浮點數,用於存儲浮點運算的中間結果。還有一些系統提供128位的浮點數(通常用軟件實現)。
浮點數的標準
編輯舉例
編輯π的值可以表示為π = 3.1415926...10(十進制)。當在一個支持17位尾數的計算機中表示時,它會變為0.11001001000011111 × 22。
浮點數運算
編輯為了方便呈現,容易閱讀,以下的例子會用十進制,有效位數7位數的浮點數,也就是IEEE 754 decimal32格式,其原理不會隨進制或是有效位數而變。此處的s表示尾數(有效數字),而e表示指數。
加減法
編輯處理浮點數加法的簡單作法是將二個浮點數調整到有相同的指數。在以下例子中,第二個數的小數點左移了三位,使二者的指數相同,之後即可進行一般的加法運算:
123456.7 = 1.234567 × 10^5 101.7654 = 1.017654 × 10^2 = 0.001017654 × 10^5
因此 123456.7 + 101.7654 = (1.234567 × 10^5) + (1.017654 × 10^2) = (1.234567 × 10^5) + (0.001017654 × 10^5) = (1.234567 + 0.001017654) × 10^5 = 1.235584654 × 10^5
若用e和s來表示
e=5; s=1.234567 (123456.7) + e=2; s=1.017654 (101.7654)
e=5; s=1.234567 + e=5; s=0.001017654 (移位後) -------------------- e=5; s=1.235584654 (實際的和:123558.4654)
這是真實的結果,二個數字真正的和,之後會再四捨五入到七位有效位數,若有需要的話,會再進行正規化,其結果為
e=5; s=1.235585 (最後答案:123558.5)
加數的最低三位數(654)沒有出現在結果中,這稱為捨入誤差。在一些極端的例子中,二個浮點數的和可能和其中的被加數或是加數相等:
e=5; s=1.234567 + e=−3; s=9.876543
e=5; s=1.234567 + e=5; s=0.00000009876543 (移位後) ---------------------- e=5; s=1.23456709876543 (真正的和) e=5; s=1.234567 (四捨五入及正規化後)
在上述的例子中,為了要有正確的四捨五入結果,在二數指數差距很大時,要增加許多位數才有正確的結果。不過,在二位制的加減法中,利用一個guard位元、一個rounding位元以及一個額外的sticky位元,就可以有正確的結果[1][2]:218–220。
另一個失去有效數字的情形出現在二個幾乎相等的數字相減時。在以下的例子中,e = 5; s = 1.234571和e = 5; s = 1.234567是有理數123457.1467和123456.659的近似值。
e=5; s=1.234571 − e=5; s=1.234567 ---------------- e=5; s=0.000004 e=−1; s=4.000000 (四捨五入及正規化後)
浮點數的差可以精確的計算,如同Sterbenz引理所說明的,就算是因為漸進式下溢位而出現下溢位也是一樣。不過,原來二個數的差是e = −1; s = 4.877000,和浮點數計算結果e = −1; s = 4.000000之間差了超過20%。在極端的例子中,甚至所有的有效數字都會不見[1][3]。上述的災難性抵消說明了,假設計算結果的每一位數都有意義,這個想法很危險。這類誤差的處理及修正是數值分析中的主題之一。
乘除法
編輯若要進行乘法,將有效數字相乘,指數相加,再進行四捨五入及正規化即可。
e=3; s=4.734612 × e=5; s=5.417242 ----------------------- e=8; s=25.648538980104 (真實乘積) e=8; s=25.64854 (四捨五入後) e=9; s=2.564854 (正規化)
而除法會將被除數和除數的有效數字相除,二者的指數相減,再進行四捨五入及正規化。
乘除法不會有抵消或是某一數字被吸收的問題,不過仍會出現一些小誤差,若連續運算,誤差會變大[1]。實務上,要進行上述運算的數位邏輯可能會相當的複雜(像是布斯乘法算法以及除法器)。
準確性
編輯由於浮點數不能表達所有實數,浮點運算與相應的數學運算有所差異,有時此差異極為顯著。
比如,二進制浮點數不能表達0.1和0.01,0.1的平方既不是準確的0.01,也不是最接近0.01的可表達的數。單精度(24比特)浮點數表示0.1的結果為 , ,即
- 0.100000001490116119384765625
此數的平方是
- 0.010000000298023226097399174250313080847263336181640625
但最接近0.01的可表達的數是
- 0.009999999776482582092285156250
浮點數也不能表達圓周率 ,所以 不等於正無窮,也不會溢出。下面的C語言代碼
double pi = 3.1415926535897932384626433832795;
double z = tan(pi/2.0);
的計算結果為16331239353195370.0,如果用單精度浮點數,則結果為−22877332.0。同樣的, 。
由於浮點數計算過程中丟失了精度,浮點運算的性質與數學運算有所不同。浮點加法和乘法不符合結合律和分配律。
事故
編輯奔騰早期的60-100MHz P5版本在浮點運算單元有一個問題,在極少數情況下,會導致除法運算的精確度降低。這個缺陷於1994年被發現,變成如今廣為人知的奔騰浮點除錯誤,同時這一事件導致英特爾陷入巨大的窘態,建立召回計畫來回收有問題的處理器。
相關條目
編輯參考資料
編輯- ^ 1.0 1.1 1.2 Goldberg, David. What Every Computer Scientist Should Know About Floating-Point Arithmetic (PDF). ACM Computing Surveys. March 1991, 23 (1): 5–48 [2016-01-20]. S2CID 222008826. doi:10.1145/103162.103163. (原始內容存檔 (PDF)於2006-07-20). ([1] (頁面存檔備份,存於網際網路檔案館), [2] (頁面存檔備份,存於網際網路檔案館), [3] (頁面存檔備份,存於網際網路檔案館))
- ^ Patterson, David A.; Hennessy, John L. Computer Organization and Design, The Hardware/Software Interface. The Morgan Kaufmann series in computer architecture and design 5th. Waltham, Massachusetts, USA: Elsevier. 2014: 793. ISBN 978-9-86605267-5 (英語).
- ^ 美國專利3037701A (於1962年6月5日註冊)Huberto M Sierra——Floating decimal point arithmetic control means for calculator。