股節弦音器官

股節弦音器官是一組位於昆蟲腿部的機械感覺神經元(圖 1)。它的主要功能是檢測股節/脛節關節的運動和位置。 [1]該器官是一種本體感受器(proprioceptor)。它把股節/脛節處關節運動和位置的相關信息傳遞到腹側神經索(ventral nerve cord, VNC)和大腦,從而在對腿部位置和運動的控制中起到了至關重要的作用[2] [3] [4] [5]

圖1。果蠅股節中的弦音器官左:果蠅腿股節弦音器官細胞(用綠色熒光蛋白標記)的免疫熒光圖片。綠色為弦音器官,紅色為肌肉。股節弦音器官位於果蠅腿股節(femur)靠近轉節(trochanter),遠離脛節(tibia)的一側。右圖:果蠅的示意圖。紅色標記的是果蠅前腿的脛節,棕色為股節。股節弦音器官感知股節/脛節處關節的運動和相對位置。

解剖結構

編輯

股節弦音器官神經元的細胞體通常位於股節近端(靠近身體的一端) [1] 。它們的樹突通過不同類型的肌腱連接到脛節外骨骼上。 [6] [7] [8] [9] [10]在模式生物果蠅中,科學家可以通過軸突在腹神經索中的形態來辨別不同類型的股節弦音器官神經元,並且可以通過基因學的方法來特異性地標記這些神經元。在果蠅中,這些神經元可以被分為三種亞型(圖2)[11] :棒狀神經元(club)的軸突投射到腹神經索的中心,並且形成形似球棒的神經束;爪狀神經元(claw)的軸突在腹神經索中分叉成三個形狀像鳥爪的分支;鈎狀神經元(hook)的軸突形狀像彎鈎。

感官編碼

編輯
 
圖 2.果蠅股節弦音器官神經元的功能亞型。左圖:果蠅示意圖。果蠅胸節中黑色實線表示的器官即其腹神經索。股節弦音器官神經元的軸突投射到此處。中:果蠅股節弦音器官神經元不同亞型的軸突形態示意圖。右圖:不同形態的股節弦音器官神經元編碼不同的股節/脛節處關節的運動特徵。球棒型神經元編碼關節的振動(高頻率的雙向運動);爪狀神經元編碼股節/脛節的相對位置;鈎狀神經元編碼股節/脛節的相對運動方向[11]

股節弦音器官神經元編碼股節/脛節處關節的各種運動學特徵,包括位置、速度、加速度和振動。 [12] [13] [14] [15] [16] [17] [18]這些不同的運動學特徵是由上述提到的解剖學上不同的神經元亞型編碼的[11] (圖2)。脛節的位置由爪狀神經元編碼,振動由棒狀神經元編碼,運動方向由鈎狀神經元編碼。 [11]

功能

編輯

一般認為股節弦音器官參與腿部運動的精確控制。通過研究竹節蟲蝗蟲的股節弦音器官,人們發現該器官在昆蟲行走 [2]和抓取物體[3]的過程中起到重要作用。

 
圖 3.動物的行為狀態影響股節弦音器官介導的反射行為。左上:在昆蟲站立時,肢體中的股節弦音器官神經元持續檢測到股節/脛節相對位置的變化。如果脛節被外力移動,比如被外力推動而收縮,股節弦音器官會感受到該刺激並介導類似膝跳反射的反射行為,從而伸張脛節,維持昆蟲肢體的穩定。左下:在昆蟲主動運動時,股節弦音器官會受到上游神經元的調控,從而介導與左上圖中相反的輔助性反射。如果脛節因為主動運動而收縮,該反射會幫助脛節收縮,從而使得昆蟲能夠更平穩地運動。右:竹節蟲示意圖。

股節弦音器官通過介導反射行為來控制腿部運動 (圖3)。在昆蟲處於靜止狀態時,該反射會在肢體被外力移動時起作用,從而產生與外力相反的力,阻止肢體受外力影響而移動。在昆蟲處於運動狀態時,該反射會發生逆轉,不再阻止肢體的運動,反而會促進肢體的周期性屈曲與伸展 [19] [20]

參考

編輯
  1. ^ 1.0 1.1 Field, Laurence H.; Matheson, Thomas, Evans, P. D. , 編, Chordotonal Organs of Insects, Advances in Insect Physiology 27, Academic Press: 1–228, 1998-01-01 [2022-02-03], ISBN 9780120242276, doi:10.1016/s0065-2806(08)60013-2 (英語) 
  2. ^ 2.0 2.1 BÄSSLER, ULRICH. Functional Principles of Pattern Generation for Walking Movements of Stick Insect Forelegs: The Role of the Femoral Chordotonal Organ Afferences. Journal of Experimental Biology. 1988-05-01, 136 (1): 125–147. ISSN 0022-0949. doi:10.1242/jeb.136.1.125 . 
  3. ^ 3.0 3.1 Page, Keri L.; Matheson, Thomas. Functional Recovery of Aimed Scratching Movements after a Graded Proprioceptive Manipulation. Journal of Neuroscience. 2009-03-25, 29 (12): 3897–3907 [2023-10-03]. ISSN 0270-6474. PMC 6665037 . PMID 19321786. doi:10.1523/JNEUROSCI.0089-09.2009. (原始內容存檔於2023-09-29) (英語). 
  4. ^ FIELD, L.H.; BURROWS, M. Reflex Effects of the Femoral Chordotonal Organ Upon Leg Motor Neurones of the Locust. Journal of Experimental Biology. 1982-12-01, 101 (1): 265–285. ISSN 0022-0949. doi:10.1242/jeb.101.1.265 . 
  5. ^ Mendes, César S; Bartos, Imre; Akay, Turgay; Márka, Szabolcs; Mann, Richard S. Calabrese, Ron , 編. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife. 2013-01-08, 2: e00231. ISSN 2050-084X. PMC 3545443 . PMID 23326642. doi:10.7554/eLife.00231. 
  6. ^ Shanbhag, Shubha R.; Singh, Kusum; Naresh Singh, R. Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera : Drosophilidae). International Journal of Insect Morphology and Embryology. 1992-10-01, 21 (4): 311–322. ISSN 0020-7322. doi:10.1016/0020-7322(92)90026-J (英語). 
  7. ^ Field, Laurence H. Mechanism for range fractionation in chordotonal organs of Locusta migratoria (L) and Valanga sp. (Orthoptera : Acrididae). International Journal of Insect Morphology and Embryology. February 1991, 20 (1–2): 25–39 [2023-10-03]. doi:10.1016/0020-7322(91)90025-5. (原始內容存檔於2023-11-15) (英語). 
  8. ^ SHELTON, P. M.J.; STEPHEN, R. O.; SCOTT, J. J.A.; TINDALL, A. R. The Apodeme Complex of the Femoral Chordotonal Organ in the Metathoracic Leg of the Locust Schistocerca Gregaria. Journal of Experimental Biology. 1992-02-01, 163 (1): 345–358. ISSN 0022-0949. doi:10.1242/jeb.163.1.345. 
  9. ^ Nowel, M; Shelton, P; Stephen, R. Functional organisation of the metathoracic femoral chordotonal organ in the cricket Acheta domesticus. Journal of Experimental Biology. 1995-09-01, 198 (9): 1977–1988 [2023-10-03]. ISSN 1477-9145. PMID 9319888. doi:10.1242/jeb.198.9.1977. (原始內容存檔於2023-10-03) (英語). 
  10. ^ Theophilidis, G. The femoral chordotonal organs of Decticus albifrons (Orthoptera: Tettigoniidae)—I. Structure. Comparative Biochemistry and Physiology Part A: Physiology. 1986-01-01, 84 (3): 529–536. ISSN 0300-9629. doi:10.1016/0300-9629(86)90361-0 (英語). 
  11. ^ 11.0 11.1 11.2 11.3 Mamiya, Akira; Gurung, Pralaksha; Tuthill, John C. Neural Coding of Leg Proprioception in Drosophila. Neuron. 2018-11-07, 100 (3): 636–650.e6. ISSN 0896-6273. PMC 6481666 . PMID 30293823. doi:10.1016/j.neuron.2018.09.009 (English). 
  12. ^ Field, L. H.; Pflüger, H. -J. The femoral chordotonal organ: A bifunctional orthopteran (Locusta migratoria) sense organ?. Comparative Biochemistry and Physiology Part A: Physiology. 1989-01-01, 93 (4): 729–743. ISSN 0300-9629. doi:10.1016/0300-9629(89)90494-5 (英語). 
  13. ^ Hofmann, T.; Koch, U. T.; Bässler, U. Physiology of the Femoral Chordotonal Organ in the Stick Insect, Cuniculina Impigra. Journal of Experimental Biology. 1985-01-01, 114 (1): 207–223. ISSN 0022-0949. doi:10.1242/jeb.114.1.207 . 
  14. ^ Kondoh, Y.; Okuma, J.; Newland, P. L. Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology. 1995-05-01, 73 (5): 1829–1842 [2023-10-03]. ISSN 0022-3077. PMID 7623084. doi:10.1152/jn.1995.73.5.1829. (原始內容存檔於2022-08-02). 
  15. ^ Matheson, Thomas. Responses and locations of neurones in the locust metathoracic femoral chordotonal organ. Journal of Comparative Physiology A. 1990-04-01, 166 (6): 915–927. ISSN 1432-1351. S2CID 10011457. doi:10.1007/BF00187338 (英語). 
  16. ^ Matheson, Thomas. Range fractionation in the locust metathoracic femoral chordotonal organ. Journal of Comparative Physiology A. 1992-04-01, 170 (4): 509–520. ISSN 1432-1351. S2CID 26197182. doi:10.1007/BF00191466 (英語). 
  17. ^ Stein, W.; Sauer, A. E. Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. Journal of Comparative Physiology A. 1999-04-01, 184 (3): 253–263. ISSN 1432-1351. S2CID 28570721. doi:10.1007/s003590050323 (英語). 
  18. ^ Zill, S. N. Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ. Journal of Experimental Biology. 1985-05-01, 116 (1): 435–461. ISSN 0022-0949. PMID 4056657. doi:10.1242/jeb.116.1.435. 
  19. ^ Bässler, U. Reversal of a reflex to a single motoneuron in the stick insect Çarausius morosus. Biological Cybernetics. 1976-03-01, 24 (1): 47–49. ISSN 0340-1200. S2CID 12007820. doi:10.1007/bf00365594. 
  20. ^ Zill, S. N. Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. Journal of Experimental Biology. 1985-05-01, 116 (1): 463–480. ISSN 1477-9145. PMID 4056658. doi:10.1242/jeb.116.1.463 .