轉移熵
轉移熵(英語:transfer entropy)是測量兩個隨機過程之間有向(時間不對稱)信息轉移量的一種非參數統計量。[1][2][3]過程X到另一個過程Y的轉移熵可定義為:在已知Y過去值的情況下,了解X的過去值所能減少Y未來值不確定性的程度。更具體地說,假定和()表示兩個隨機過程,並用香農熵來度量信息量,則轉移熵可定義為:
其中H ( X ) 表示X的香農熵。此外,還可以使用其他類型的熵度量(例如雷尼熵)對上述定義進行擴展。[3][4]
轉移熵可看作一種條件互信息[5][6],其條件為受影響變量的歷史值:
對向量自回歸過程而言,轉移熵可簡化為格蘭傑因果關係。[7] 因而,轉移熵適用於非線性信號分析等格蘭傑因果關係的模型假設不成立的場合。[8][9]然而,它通常需要更多的樣本才能進行準確估計。[10]熵公式中的概率可以使用分箱、最近鄰等不用方法來估計,或為了降低複雜性而使用非均勻嵌入方法。[11]雖然轉移熵的原始定義是建立在雙變量分析基礎上的,但後來也擴展到多變量分析中。這種擴展可以以其他潛在源變量為條件[12] ,或考慮從一組源進行轉移[13],不過這些都需要更多的樣本。
轉移熵被用於估計神經元的功能連接[13][14][15]、社交網絡中的社會影響[8]以及武裝衝突事件之間的統計因果關係等。[16]轉移熵是有向信息的有限形式,於1990年由詹姆斯·馬西[17]定義為,其中表示向量,則表示 。有向信息在描述具有或沒有反饋的通信信道的基本極限(信道容量)中起着關鍵作用。[18][19]
參見
編輯參考文獻
編輯- ^ Schreiber, Thomas. Measuring information transfer. Physical Review Letters. 1 July 2000, 85 (2): 461–464. Bibcode:2000PhRvL..85..461S. PMID 10991308. S2CID 7411376. arXiv:nlin/0001042 . doi:10.1103/PhysRevLett.85.461.
- ^ Seth, Anil. Granger causality. Scholarpedia. 2007, 2 (7): 1667. Bibcode:2007SchpJ...2.1667S. doi:10.4249/scholarpedia.1667 .
- ^ 3.0 3.1 Hlaváčková-Schindler, Katerina; Palus, M; Vejmelka, M; Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Physics Reports. 1 March 2007, 441 (1): 1–46. Bibcode:2007PhR...441....1H. CiteSeerX 10.1.1.183.1617 . doi:10.1016/j.physrep.2006.12.004.
- ^ Jizba, Petr; Kleinert, Hagen; Shefaat, Mohammad. Rényi's information transfer between financial time series. Physica A: Statistical Mechanics and Its Applications. 2012-05-15, 391 (10): 2971–2989. Bibcode:2012PhyA..391.2971J. ISSN 0378-4371. S2CID 51789622. arXiv:1106.5913 . doi:10.1016/j.physa.2011.12.064 (英語).
- ^ Wyner, A. D. A definition of conditional mutual information for arbitrary ensembles. Information and Control. 1978, 38 (1): 51–59. doi:10.1016/s0019-9958(78)90026-8 .
- ^ Dobrushin, R. L. General formulation of Shannon's main theorem in information theory. Uspekhi Mat. Nauk. 1959, 14: 3–104.
- ^ Barnett, Lionel. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables. Physical Review Letters. 1 December 2009, 103 (23): 238701. Bibcode:2009PhRvL.103w8701B. PMID 20366183. S2CID 1266025. arXiv:0910.4514 . doi:10.1103/PhysRevLett.103.238701.
- ^ 8.0 8.1 Ver Steeg, Greg; Galstyan, Aram. Information transfer in social media. Proceedings of the 21st international conference on World Wide Web (WWW '12). ACM: 509–518. 2012. Bibcode:2011arXiv1110.2724V. arXiv:1110.2724 .
- ^ Lungarella, M.; Ishiguro, K.; Kuniyoshi, Y.; Otsu, N. Methods for quantifying the causal structure of bivariate time series. International Journal of Bifurcation and Chaos. 1 March 2007, 17 (3): 903–921. Bibcode:2007IJBC...17..903L. CiteSeerX 10.1.1.67.3585 . doi:10.1142/S0218127407017628.
- ^ Pereda, E; Quiroga, RQ; Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals.. Progress in Neurobiology. Sep–Oct 2005, 77 (1–2): 1–37. Bibcode:2005nlin.....10077P. PMID 16289760. S2CID 9529656. arXiv:nlin/0510077 . doi:10.1016/j.pneurobio.2005.10.003.
- ^ Montalto, A; Faes, L; Marinazzo, D. MuTE: A MATLAB Toolbox to Compare Established and Novel Estimators of the Multivariate Transfer Entropy.. PLOS ONE. Oct 2014, 9 (10): e109462. Bibcode:2014PLoSO...9j9462M. PMC 4196918 . PMID 25314003. doi:10.1371/journal.pone.0109462 .
- ^ Lizier, Joseph; Prokopenko, Mikhail; Zomaya, Albert. Local information transfer as a spatiotemporal filter for complex systems. Physical Review E. 2008, 77 (2): 026110. Bibcode:2008PhRvE..77b6110L. PMID 18352093. S2CID 15634881. arXiv:0809.3275 . doi:10.1103/PhysRevE.77.026110.
- ^ 13.0 13.1 Lizier, Joseph; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. Journal of Computational Neuroscience. 2011, 30 (1): 85–107. PMID 20799057. S2CID 3012713. doi:10.1007/s10827-010-0271-2.
- ^ Vicente, Raul; Wibral, Michael; Lindner, Michael; Pipa, Gordon. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience. February 2011, 30 (1): 45–67. PMC 3040354 . PMID 20706781. doi:10.1007/s10827-010-0262-3.
- ^ Shimono, Masanori; Beggs, John. Functional clusters, hubs, and communities in the cortical microconnectome. Cerebral Cortex. October 2014, 25 (10): 3743–57. PMC 4585513 . PMID 25336598. doi:10.1093/cercor/bhu252.
- ^ Kushwaha, Niraj; Lee, Edward D. Discovering the mesoscale for chains of conflict. PNAS Nexus. July 2023, 2 (7). ISSN 2752-6542. PMC 10392960 . PMID 37533894. doi:10.1093/pnasnexus/pgad228.
- ^ Massey, James. Causality, Feedback And Directed Information (ISITA). 1990. CiteSeerX 10.1.1.36.5688 .
- ^ Permuter, Haim Henry; Weissman, Tsachy; Goldsmith, Andrea J. Finite State Channels With Time-Invariant Deterministic Feedback. IEEE Transactions on Information Theory. February 2009, 55 (2): 644–662. S2CID 13178. arXiv:cs/0608070 . doi:10.1109/TIT.2008.2009849.
- ^ Kramer, G. Capacity results for the discrete memoryless network. IEEE Transactions on Information Theory. January 2003, 49 (1): 4–21. doi:10.1109/TIT.2002.806135.