頻譜效率
頻譜效率(英語:Spectral efficiency)是指在數位通信系統中的頻寬限制下,可以傳送的資料總量。它是在有限的頻譜下,物理層通信協議(有時是媒介訪問控制,信道接入協議)可以達到的使用效率的量度。[1]
鏈路頻譜效率
編輯數字通信系統的鏈路頻譜效率(Link spectral efficiency)的單位是 bit/s/Hz,[2] 或(bit/s)/Hz(較少用,但更準確)。其定義為淨比特率(有用信息速率,不包括糾錯碼)或最大吞吐量除以通信信道或數據鏈路的帶寬(單位:赫茲)。調製效率定義為總比特率(包括糾錯碼)除以帶寬。
頻譜效率通常被用於分析數字調製方式的效率,有時也考慮前向糾錯碼(forward error correction, FEC)和其他物理層開銷。在後一種情況下,1個「比特」特指一個用戶比特,FEC的開銷總是不包括在內的。
- 例1:1kHz帶寬中可以傳送毎秒1000bit的技術,其頻譜效率或調製效率均為1 bit/s/Hz。
- 例2:電話網的V.92調製解調器在模擬電話網上以56,000 bit/s的下行速率和48,000 bit/s的上行速率傳輸。經由電話交換機的濾波,頻率限制在300Hz到3,400Hz之間,帶寬相應為 3400 − 300 = 3100 Hz 。頻譜效率或調製效率為 56,000/3,100 = 18.1 bit/s/Hz(下行)、48,000/3,100 = 15.5 bit/s/Hz(上行)。
使用FEC 的架空調變方式可達到最大的頻譜効率可以利用標本化定理來求得,信號的字母表(計算機科學)利用符號數量M來組合、各符號使用 N = log2 M bit來表示。此情況下頻譜效率若不使用編碼間干涉的話,無法超過2N bit/s/Hz的效率。舉例來說,符號種類有8種、每個各有3bit 的話,頻譜効率最高不超過6 bit/s/Hz。
在使用前向錯誤更正編碼的情形時頻譜效率會降低。比如說使用1/2編碼率的FEC時,編碼長度會變為1.5倍,頻譜效率會降低50%。頻譜效率降低的同時FEC可以改善信號的信噪比(並非一定會有改善)。
對某個信噪比通信回來說、在完全沒有傳輸錯誤,且編碼與調變方式皆處於理想的狀況時,其頻譜效率的上限可由哈特利定理得出。比如說信噪比1即分貝為0時,無論編碼與調變方式如何變化,頻譜效率不會超過1 bit/s/Hz。
Goodput(應用層情報使用的量)比一般在此計算的吞吐量還小,其原因為有封包再次傳送、超傳輸協議的架空造成的。
頻譜效率這個用語,會產生數值越大的話可以使周波數頻譜產生更有效的誤解產生。比如手機因為頻譜擴散與使用FEC技術使得頻譜效率低下,但信噪比不好有時還是可以正常通信。因此可以使用到比周波頻寬數還多的鏈結、以整體來看其效果可以彌補頻譜效率低下的缺點還有過之。如同後面會提到的,具有較為合適尺度代表」單位頻寬利用率」單位的bit/s/Hz存在,這是屬於分碼多工(CDMA)的技術並已成為數位手機的基本構成技術。但是電話線路與有線電視網等由於沒有頻道相互干擾的問題,其使用的基本上皆為其信噪比下最大頻譜效率。
系統頻譜效率
編輯無線網路是以系統頻譜效率'在有限的無線周波數頻寬下可以同時支援的客戶數與服務進行量化。其單位為bit/s/Hz/area unit、bit/s/Hz/cell、bit/s/Hz/site 等進行計量。有可以把系統能同時支援使用者的吞吐量與goodput的總量以通信迴路的頻寬(Hz)來表示。這並不單影響使用單一通信迴路的技術,多元連接手法與無線資源管理技術也受到影響,特別是動態無線資源管理可以得到改善。定義最大goodput時,會排除掉通信迴路間的相互干渉與衝突,高階通訊協定的架空也是忽略不計的。
手機網絡的容量也是以1 MHz 周波數頻寬上可以同時最大連接線數來表示,即Erlang/MHz/cell、Erlangs/MHz/sector、Erlangs/MHz/km² 等單位。這個數值也影響到訊息編碼技術(數據壓縮)、在類比電話網絡也有使用。
- 例: 以頻分多址 (FDMA)與固定頻道分配(FCA)為基礎的手機系統在頻率再利用係數是 4的時候、各基地局可以利用的是所有頻譜的1/4。根據此推算、最大系統頻譜效率(bit/s/Hz/site)是鏈結頻譜效率的 1/4。各基地局使用3個扇形天線將訊號分為3扇區時,被稱為4/12再利用模式。各部份可以使用全頻譜的1/12,因此系統的頻譜效率(bit/s/Hz/cell 或 bit/s/Hz/sector)為鏈結頻譜效率的1/12。
即使鏈結頻譜效率(bit/s/Hz)偏低,以 「系統頻譜效率」的観點來看,並不一定代表編碼效率不好。例如、分碼多工(CDMA) 頻譜擴散為單一通信迴路(即只有一位使用者)時,頻譜效率是不好的,但是由於在同一頻寬中有複數的通信迴路存在,因此系統頻譜效率非常好。
- 例: 以W-CDMA 3G 手機系統來說、打電話時最大壓縮8,500 bit/s時、會造成 5 MHz 頻寬的擴散,此時此連接的吞吐量為8,500/5,000,000 = 0.0017 bit/s/Hz。在這情形下同扇區內可以有同時容納100通電話(有聲音)的進行。由於各基地局以3個方向的扇形天線區分為3個扇區,在頻譜擴散後、頻率再利用係數會變的比1還小。此時的系統頻譜效率為 1 · 100 · 0.0017 = 0.17 bit/s/Hz/site亦或 0.17/3 = 0.06 bit/s/Hz/cell(也可換算成 bit/s/Hz/sector)。
頻譜效率可以使用固定/動態頻道分配、電力控制、 即被稱為Link Adaptatio的無線資源管理技術來進行改善。
比較表
編輯以下為一般通信系統的頻譜效率數值。
服務 | 規格 | 每秒頻道的頻寬R
(Mbit/s) |
頻道的頻寬B
(MHz) |
鏈結頻譜效率 R/B
(bit/s/Hz) |
典型的頻率再利用係數 1/K | 系統頻譜效率
一般 R/B/K 數值 (bit/s/Hz/site) |
---|---|---|---|---|---|---|
第二世代手機 (2G) | GSM 1993 | 0.013·8 時隙 = 0.104 | 0.2 | 0.52 | 1/7 | 0.17 |
2.75G | GSM + EDGE | 最大 0.384 通常 0.20 | 0.2 | 最大 1.92 通常 1.00 | 1/7 | 0.33 |
2.75G | IS-136HS + EDGE | 最大 0.384 通常 0.27 | 0.2 | 最大 1.92 通常 1.35 | 1/7 | 0.45 |
第三世代手機 (3G) | W-CDMA FDD 1997 | 傳到手機時最大 0.384 | 5 | 傳到手機時最大 0.077 | 1/7 | 0.51 |
3.5G | HSDPA 2007 | 傳到手機時最大 14.4 | 5 | 傳到手機時最大 2.88 | 1/7 | 0.71 |
3.5G | HSOPA OFDMA | 傳到手機時最大 100 | 10 | 傳到手機時最大 5 | 1/7 | 0.71 |
第三世代攜帯電話 (3G) | CDMA2000 1x | 傳到手機時最大 0.144 | 1.25 | 傳到手機時最大 0.115 | 1/7 | 0.51 |
Wi-Fi | IEEE 802.11a/g 2003 | 最大 54 | 20 | 最大 2.7 | 1/3 | 0.9 |
Wi-Fi | IEEE 802.11n Draft 2.0 2007 | 最大 144.4 | 20 | 最大 7.22 | 1/3 | 2.4 |
WiMAX | IEEE 802.16 2004 | 96 | 20 (1.75, 3.5, 7...) | 4.8 | 1/4 | 1.2 |
數位廣播 | DAB | 0.576 ~ 1.152 | 1.712 | 0.34 ~ 0.67 | 1/5 | 0.08 ~ 0.17 |
數位廣播 | DAB + SFN | 0.576 ~ 1.152 | 1.712 | 0.34 ~ 0.67 | ||
數位電視 | DVB-T | 最大 31.67 通常 22.0 | 8 | 最大 4.0 通常 2.8 | 1/5 | 0.55 |
數位電視 | DVB-T + SFN | 最大 31.67 通常 22.0 | 8 | 最大 4.0 通常 2.8 | ||
數位電視 | DVB-H | 5.5 ~ 11 | 8 | 0.68 ~ 1.4 | 1/5 | 0.14 ~ 0.28 |
數位電視 | DVB-H + SFN | 5.5 ~ 11 | 8 | 0.68 ~ 1.4 | ||
光纖用數位電視TV | 256-QAM | 38 | 6 | 6.33 | 1 | 6.33 |
第四代移動通信(LTE) | TD-LTE、LTE-FDD | 最大下行鏈路100 | 20 | 5 | 1 | 5 |
第五代移動通信(5G NR) | 5G NR
(NewRadio) |
最大下行鏈路1000 | 100 | 10 | 1 | 10 |
參見
編輯參考文獻
編輯- ^ G. Miao, J. Zander, K-W Sung, and B. Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, ISBN 1107143217, 2016.
- ^ Sergio Benedetto and Ezio Biglieri. Principles of Digital Transmission: With Wireless Applications. Springer. 1999 [2022-03-09]. ISBN 0-306-45753-9. (原始內容存檔於2021-04-28).