吉布斯採樣
算法
吉布斯採樣(英語:Gibbs sampling)是統計學中用於馬爾科夫蒙特卡洛(MCMC)的一種算法,用於在難以直接採樣時從某一多變量概率分佈中近似抽取樣本序列。該序列可用於近似聯合分佈、部分變量的邊緣分佈或計算積分(如某一變量的期望值)。某些變量可能為已知變量,故對這些變量並不需要採樣。
吉布斯採樣常用於統計推斷(尤其是貝葉斯推斷)之中。這是一種隨機化算法,與最大期望算法等統計推斷中的確定性算法相區別。與其他MCMC算法一樣,吉布斯採樣從馬爾科夫鏈中抽取樣本,可以看作是Metropolis–Hastings算法的特例。
該算法的名稱源於約西亞·威拉德·吉布斯,由斯圖爾特·傑曼與唐納德·傑曼兄弟於1984年提出。[1]
演算法
編輯吉布斯採樣適用於條件分佈比邊緣分佈更容易採樣的多變量分佈。假設我們需要從聯合分佈 中抽取 的 個樣本。記第 個樣本為 。吉布斯採樣的過程則為:
- 確定初始值 。
- 假設已得到樣本 ,記下一個樣本為 。於是可將其看作一個向量,對其中某一分量 ,可通過在其他分量已知的條件下該分量的概率分佈來抽取該分量。對於此條件概率,我們使用樣本 中已得到的分量 到 以及上一樣本 中的分量 到 ,即 。
- 重複上述過程 次。
在採樣完成後,我們可以用這些樣本來近似所有變量的聯合分佈。如果僅考慮其中部分變量,則可以得到這些變量的邊緣分佈。此外,我們還可以對所有樣本求某一變量的平均值來估計該變量的期望。
參見
編輯參考文獻
編輯- ^ Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984, 6 (6): 721–741. doi:10.1109/TPAMI.1984.4767596.
- Bishop, Christopher M., Pattern Recognition and Machine Learning, Springer, 2006, ISBN 0-387-31073-8
- Bolstad, William M. (2010), Understanding Computational Bayesian Statistics, John Wiley ISBN 978-0-470-04609-8
- Casella, G.; George, E. I. Explaining the Gibbs Sampler. The American Statistician. 1992, 46 (3): 167. JSTOR 2685208. doi:10.2307/2685208.
- Gelfand, Alan E.; Smith, Adrian F. M., Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, 1990, 85 (410): 398–409, JSTOR 2289776, MR 1141740, doi:10.2307/2289776
- Gelman, A., Carlin J. B., Stern H. S., Dunson D., Vehtari A., Rubin D. B. (2013), Bayesian Data Analysis, third edition. London: Chapman & Hall.
- Levin, David A.; Peres, Yuval; Wilmer, Elizabeth L. (2008), "Markov Chains and Mixing Times", American Mathematical Society.
- Robert, C. P.; Casella, G. (2004), Monte Carlo Statistical Methods (second edition), Springer-Verlag.