時頻分析的性質由其分佈的核所決定,藉由檢視分佈核的限制條件我們能很容易的了解時頻分佈的優缺點並讓我們快速的選擇符合需求的時頻分佈。因此我們將利用時頻分佈和核函數之間的關聯研究相對應的時頻分析性質,並以此作為設計時頻分析的基準。
我們可以將廣義的時頻分佈形式做變形以便從不同的角度觀察時頻分佈與其核的關係,在時頻分佈的性質與核中會看到這些表示式提供對核的刻畫與限制,其中常用的幾種等價表示式為
若令廣義的模稜函數 為
-
其中 為信號 本身的模稜函數,則時頻分佈可表為 的特徵函數
-
計算廣義的局部自相關函數 為
-
則時頻分佈可表示成 的傅立葉轉換,可類比功率譜密度和自相關函數之間的關係。
-
將核函數對參數 做傅立葉變換可得
-
-
對於廣義時頻分佈做變數變換 則有
-
-
由於任意的二維函數都可以作為核而產生時頻分佈,事實上我們要面對的是無限多種的核(與時頻分佈),因此在現實應用與討論中我們常常將注意力放在一部份擁有特定足夠好性質的核函數,以下簡介之
核函數僅依賴的參數 的積
核函數可被分解為兩個單變數函數的積
核函數不依賴時間參數 與頻率參數 ,函數 對參數 為雙線性
以下我們討論時頻分佈的基本性質與為了達到這些性質核函數必須要滿足的條件
考慮時頻分佈函數 ,我們希望對於頻率參數 積分之後能得到在時間 的信號能量
,因此我們必須使下式成立
-
因此我們必須要求 。相同的為了得到 , 我們必須要求
最後,考慮總能量我們則須要求
為了使時頻分佈的計算結果為實數,考慮時頻分佈的特徵函數計算式,相當於對 進行兩次傅立葉轉換
-
因此廣義模稜函數 必須滿足共軛對稱性
-
在信號本身為實數信號時的 模稜函數 直接滿足共軛對稱,因此條件變為
-
考慮對輸入信號做時頻位移 ,若要對應的時頻分佈滿足 ,則核函數必須不依賴時間和頻率。
考慮縮放後的信號 , 我們希望對應的時頻分佈滿足 ,則核函數必須是乘積核
我們希望能從時頻分佈 中重新恢復輸入信號
由關係式 兩側同時取傅立葉變換可得
-
做變數變換 ,並取 可得
-
現在我們考慮對同一個信號使用不同的核函數 ,獲得兩個時頻分佈
這兩個時頻分佈的特徵函數為
因此特徵函數和核函數的關聯為
因此我們可以將 以 表達為:
-
- Leon Cohen, "Generalized phase-space distribution functions," Jour. Math. Phys., vol. 7, pp. 781-786, 1966.
- Leon Cohen, "Time-frequency analysis," 1995.