有界變差(英語:Bounded variation)是函數的一個性質,它指的是總變差為有限的函數

有界變差的理論對黎曼-斯蒂爾傑斯積分有相當的用處。

定義

編輯

 ,若一個定義於實數區間   上的函數 有界變差函數,則存在一正數  ,對任意在區間  上的(有限)分割  而言,有  

另一個等價的定義為:定義一個跟函數   相關的量如下:

 

這裏的符號   代表在閉區間 [a, b] 上所有的(有限)分割。

 為有界變差函數當且僅當  

其定義可推廣至複數體乃至於任何的歐幾里德空間上。


性質

編輯
  • 任意單調函數都是有界變差的。
  •  在區間 上滿足Lipschitz條件,即存在常數 ,使得對於任意 ,有 ,則  上是有界變差的。
  •  在區間 上連續,且在區間的內部 可微,若對於任意在 定義域 的內部 的點 而言,存在一正實數 使得 ,則  上是有界變差的。
  •  在區間 上是有界變差的,則 在該區間上亦是有界的。
  •  在區間 上是有界變差的,則其不連續點的數量是可數的。

參見

編輯

參照

編輯