表徵學習
此條目可參照英語維基百科相應條目來擴充。 |
在機器學習中,特徵學習(feature learning)或表徵學習(representation learning)[1]是學習一個特徵的技術的集合:將原始數據轉換成為能夠被機器學習來有效開發的一種形式。它避免了手動提取特徵的麻煩,允許計算機學習使用特徵的同時,也學習如何提取特徵:學習如何學習。
機器學習任務,例如分類問題,通常都要求輸入在數學上或者在計算上都非常便於處理,在這樣的前提下,特徵學習就應運而生了。然而,現實世界中的數據,例如圖片、影片,以及感測器的測量值都非常的複雜、冗長又多變,如何有效的提取出特徵並且將其表達出來成為了一個重要挑戰。傳統的手動提取特徵需要大量的人力並且依賴於非常專業的知識。同時,還不便於推廣。這就要求特徵學習技術的整體設計非常有效,自動化,並且易於推廣。
特徵學習可以被分為兩類:監督的和無監督的,類似於機器學習。
監督特徵學習
編輯監督特徵學習就是從被標記的數據中學習特徵。大致有以下幾種方法。
監督字典學習
編輯總體來說,字典學習是為了從輸入數據獲得一組的表徵元素,使每一個數據點可以(近似的)通過對表徵元素加權求和來重構。字典中的元素和權值可以通過最小化表徵誤差來得到。通過L1正則化可以讓權值變得稀疏(例,每一個數據點的表徵只有幾個非零的權值)。
監督字典學習利用輸入數據的結構和給定的標籤(輸出)來優化字典。例如,2009年Mairal等人提出的一種監督字典學習方案被應用在了分類問題上。這個方案的優化目標包括最小化分類誤差,表徵誤差,權值的1範數(L1正則化)和分類器參數的2範數。 有監督的字典學習可以被視為一個三層神經網絡(一層隱含層),第一層(輸入層)到第二層(隱含層)是表徵學習,第二層到第三層(輸出)是分類器的參數回歸。
神經網絡
編輯神經網絡是通過多層由內部相連的節點組成的網絡的一個學習算法。它的命名是受到神經系統的啟發,它的每一個節點就像神經系統裏的神經元,而每一條邊就像一條突觸。神經網絡裏面的每一條邊都有對應的權值,而整個網絡則定義運算法則將輸入數據轉換成為輸出。神經網絡的網絡函數通過權值來刻畫輸入層跟輸出層之間的關係。通過適當的調整網絡函數,可以儘量最小化損耗的同時解決各種各樣的機器學習任務。
無監督特徵學習
編輯κ-平均算法
編輯主要成分分析
編輯獨立成分分析
編輯局部線性嵌入算法
編輯無監督字典學習
編輯另見
編輯參考文獻
編輯- ^ Y. Bengio; A. Courville; P. Vincent. Representation Learning: A Review and New Perspectives. IEEE Trans. PAMI, special issue Learning Deep Architectures. 2013, 35: 1798–1828. doi:10.1109/tpami.2013.50.
- ^ Nathan Srebro; Jason D. M. Rennie; Tommi S. Jaakkola. Maximum-Margin Matrix Factorization. NIPS. 2004.
- ^ 引用錯誤:沒有為名為
coates2011
的參考文獻提供內容 - ^ Csurka, Gabriella; Dance, Christopher C.; Fan, Lixin; Willamowski, Jutta; Bray, Cédric. Visual categorization with bags of keypoints (PDF). ECCV Workshop on Statistical Learning in Computer Vision. 2004 [2016-04-17]. (原始內容存檔 (PDF)於2021-03-08).
- ^ Daniel Jurafsky; James H. Martin. Speech and Language Processing. Pearson Education International. 2009: 145–146.