計數排序
計數排序(英語:Counting sort)是一種穩定的線性時間排序演算法。該演算法於1954年由哈羅德·H·西華德提出。計數排序使用一個額外的陣列,其中第i個元素是待排序陣列中值等於的元素的個數。然後根據陣列來將中的元素排到正確的位置。
計數排序 | |
---|---|
概況 | |
類別 | 排序演算法 |
資料結構 | 陣列 |
複雜度 | |
平均時間複雜度 | |
最壞時間複雜度 | |
最佳時間複雜度 | |
空間複雜度 | |
相關變數的定義 |
計數排序的特徵
編輯當輸入的元素是 個 到 之間的整數時,它的執行時間是 。計數排序不是比較排序,因此不被 的下界限制。
由於用來計數的陣列 的長度取決於待排序陣列中數據的範圍(等於待排序陣列的最大值與最小值的差加上1),這使得計數排序對於數據範圍很大的陣列,需要大量時間和主記憶體。例如:計數排序是用來排序0到100之間的數字的最好的演算法,但是它不適合按字母順序排序人名。但是,計數排序可以用在基數排序演算法中,能夠更有效的排序數據範圍很大的陣列。
通俗地理解,例如有10個年齡不同的人,統計出有8個人的年齡比A小,那A的年齡就排在第9位,用這個方法可以得到其他每個人的位置,也就排好了序。當然,年齡有重複時需要特殊處理(保證穩定性),這就是為什麼最後要反向填充目標陣列,以及將每個數字的統計減去1。演算法的步驟如下:
- 找出待排序的陣列中最大和最小的元素
- 統計陣列中每個值為 的元素出現的次數,存入陣列 的第 項
- 對所有的計數累加(從 中的第一個元素開始,每一項和前一項相加)
- 反向填充目標陣列:將每個元素 放在新陣列的第 項,每放一個元素就將 減去1
Java語言的實現
編輯public class CountingSort {
public static void main(String[] args) {
int[] A = CountingSort.countingSort(new int[]{16, 4, 10, 14, 7, 9, 3, 2, 8, 1});
Utils.print(A);
}
public static int[] countingSort(int[] A) {
int[] B = new int[A.length];
// 假设A中的数据a'有,0<=a' && a' < k并且k=100
int k = 100;
countingSort(A, B, k);
return B;
}
private static void countingSort(int[] A, int[] B, int k) {
int[] C = new int[k];
// 计数
for (int j = 0; j < A.length; j++) {
int a = A[j];
C[a] += 1;
}
Utils.print(C);
// 求计数和
for (int i = 1; i < k; i++) {
C[i] = C[i] + C[i - 1];
}
Utils.print(C);
// 整理
for (int j = A.length - 1; j >= 0; j--) {
int a = A[j];
B[C[a] - 1] = a;
C[a] -= 1;
}
}
}
//针对c数组的大小,优化过的计数排序
public class CountSort{
public static void main(String []args){
//排序的数组
int a[] = {100, 93, 97, 92, 96, 99, 92, 89, 93, 97, 90, 94, 92, 95};
int b[] = countSort(a);
for(int i : b){
System.out.print(i + " ");
}
System.out.println();
}
public static int[] countSort(int []a){
int b[] = new int[a.length];
int max = a[0], min = a[0];
for(int i : a){
if(i > max){
max = i;
}
if(i < min){
min = i;
}
}
//这里k的大小是要排序的数组中,元素大小的极值差+1
int k = max - min + 1;
int c[] = new int[k];
for(int i = 0; i < a.length; ++i){
c[a[i]-min] += 1;//优化过的地方,减小了数组c的大小
}
for(int i = 1; i < c.length; ++i){
c[i] = c[i] + c[i-1];
}
for(int i = a.length-1; i >= 0; --i){
b[--c[a[i]-min]] = a[i];//按存取的方式取出c的元素
}
return b;
}
}
//另一種參考,
//缺點:不適合數據落差大、浮點數,數據落差大會生成大a數組,數少用其他演算更好。
//優點:線性快,固定重複巨量數據適用,沒有更快,理論,只統計,不做多餘運算或搬移。
import java.util.Arrays;
import java.util.Random;
public class Csoft {
public static void main(String[] args) {
// int arr[] = { -535000000, 0, -372, -299,830000};
// int arr[] = {100, 93, 97, 92, 96, 99, 92, 89, 93, 97, 90, 94, 0, -1,-1,-95};
// int arr[] = Random_Numbers(500000000);
int arr[] = Random_Numbers(20);
System.out.println(Arrays.toString(arr));
new Csoft(arr);
System.out.println(Arrays.toString(arr));
}
private int min;
Csoft(){}
Csoft(int[] arr) {
b(arr);
}
public static int[] b(int[] arr) {
int max = 0, min = 0;
for (int i = 0; i < arr.length; i++) {
max = arr[i] > arr[max] ? i : max;
min = arr[i] < arr[min] ? i : min;
}
int k = -arr[min]; //k=基數
max = arr[max] + 1;
int[] a = new int[max + k];
for (int i = 0; i < arr.length; i++) {
int o = arr[i] + k;
a[o]++;
}
int t = 0;
for (int j = 0; j < a.length; j++) {
if (a[j] > 0) {
for (int i = 0; i < a[j]; i++) {
arr[t] = j - k;
t++;
}
}
}
return arr;
}
public static int[] Random_Numbers(int num) { //亂數負數
Random r = new Random();
int[] c = new int[num];
for (int i = 0; i < num; i++) {
c[i] = r.nextInt(1000) - 500;
}
return c;
}
}
C語言的實現
編輯#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void print_arr(const int *arr, const int n) {
printf("%d", arr[0]);
for (int i = 1; i < n; i++)
printf(" %d", arr[i]);
printf("\n");
}
void counting_sort(const int *ini_arr, int *sorted_arr, const int n, const int max_val) {
int *count_arr = (int *) calloc(max_val, sizeof(int));
for (int i = 0; i < n; i++)
count_arr[ini_arr[i]]++;
for (int i = 1; i < max_val; i++)
count_arr[i] += count_arr[i - 1];
for (int i = n; i > 0; i--)
sorted_arr[--count_arr[ini_arr[i - 1]]] = ini_arr[i - 1];
free(count_arr);
}
int main(int argc, char **argv) {
int n = 10;
int max_val = 100;
int *arr = (int *) calloc(n, sizeof(int));
int *sorted_arr = (int *) calloc(n, sizeof(int));
srand(time(0));
for (int i = 0; i < n; i++)
arr[i] = rand() % max_val;
printf("ini_array: ");
print_arr(arr, n);
counting_sort(arr, sorted_arr, n, max_val);
printf("sorted_array: ");
print_arr(sorted_arr, n);
free(arr);
free(sorted_arr);
return 0;
}
javascript實現
編輯Array.prototype.countSort = function() {
const C = []
for(let i = 0; i < this.length; i++) {
const j = this[i]
C[j] >= 1 ? C[j] ++ : (C[j] = 1)
}
const D = []
for(let j = 0; j < C.length; j++) {
if(C[j]) {
while(C[j] > 0) {
D.push(j)
C[j]--
}
}
}
return D
}
const arr = [11, 9, 6, 8, 1, 3, 5, 1, 1, 0, 100]
console.log(arr.countSort())
Golang的實現
編輯 func countingSort(arr []int, minvalue, maxValue int) []int {
bucketLen := maxValue - minvalue + 1
bucket := make([]int, bucketLen)
for _, v := range arr {
bucket[v-minvalue]++
}
result := make([]int, len(arr))
index := 0
for k, v := range bucket {
kk := k + minvalue
for j := v; j > 0; j-- {
result[index] = kk
index++
}
}
return result
}
Python3的實現
編輯# -*- coding: utf-8 -*-
def count_sort(a: list) -> list:
a_min: int = min(a)
k: int = max(a) - a_min + 1
c: list = [0 for _ in range(k)]
for i in a:
c[i - a_min] += 1
for i, v in enumerate(c):
if i == 0:
continue
c[i] = v + c[i-1]
result: list = [None for _ in range(len(a))]
for i in a:
result[c[i - a_min] - 1] = i
c[i - a_min] -= 1
return result
if __name__ == '__main__':
print(count_sort([652, 721, 177, 977, 24, 17, 126, 515, 442, 917]))
註解
編輯參考資料
編輯- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 演算法導論,第二版. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. 第8.2章:計數演算法, pp. 168–170.
- 高德納。電腦程式設計藝術,第三卷:排序和尋找,第二版. Addison-Wesley, 1998. ISBN 0-201-89685-0. Section 5.2, Sorting by counting, pp. 75–80.
- Seward, Harold H. Information sorting in the application of electronic digital computers to business operations Masters thesis. MIT 1954.
- http://www.nist.gov/dads/HTML/countingsort.html(頁面存檔備份,存於互聯網檔案館) NIST's Dictionary of Algorithms and Data Structures: counting sort]