阿克曼函數
歷史
編輯1920年代後期,數學家大衛·希爾伯特的學生Gabriel Sudan和威廉·阿克曼,當時正研究計算的基礎。Sudan發明了一個遞歸卻非原始遞歸的蘇丹函數。1928年,阿克曼又獨立想出了另一個遞歸卻非原始遞歸的函數。[1]
他最初的念頭是一個三個變量的函數A(m,n,p),使用康威連鎖箭號表示法是m→n→p。阿克曼證明了它是遞歸函數。希爾伯特在On the Infinite猜想這個函數不是原始遞歸函數。阿克曼在On Hilbert's Construction of the Real Numbers證明了這點。
後來Rózsa Péter和拉斐爾·米切爾·羅賓遜定義了一個類似的函數,但只用兩個變量。
定義
編輯若m=0 | |
若m>0且n=0 | |
若m>0且n>0 |
以下是阿克曼函數的偽代碼:
function ack(m, n) while m ≠ 0 if n = 0 n := 1 else n := ack(m, n-1) m := m - 1 return n+1
Haskell 語言能生成更精確的定義:
ack 0 n = n + 1 ack m 0 = ack (m - 1) 1 ack m n = ack (m - 1) (ack m (n - 1))
遞歸是有界的,因為在每次應用遞歸時,要麼 m 遞減,要麼 m 保持不變而 n 遞減。每次 n 達到零,m 遞減,所以 m 最終可以達到零。(較技術性的表達:在每種情況下,有序對(m, n)按字典次序遞減,它保持了非負整數的良序關係)。但是,在 m 遞減的時候, n 的增加沒有上界,而且增加的幅度比較大。
這個函數亦可用康威連鎖箭號表示法來作一個非遞歸性的定義:
- 對於m>2,A(m, n) = (2 → (n+3) → (m - 2)) - 3。
即是
- 對於n>2,2 → n → m = A(m+2,n-3) + 3。
使用hyper運算子就是
- A(m, n) = hyper(2, m, n + 3) - 3。
使用高德納箭號表示法則為
- A(m, n) = 2↑m-2(n+3) - 3。
函數值表
編輯m\n | 0 | 1 | 2 | 3 | 4 | n |
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
1 | 2 | 3 | 4 | 5 | 6 | |
2 | 3 | 5 | 7 | 9 | 11 | |
3 | 5 | 13 | 29 | 61 | 125 | |
4 | 13 | 65533 | 265536 − 3 | A(3, 265536 − 3) | A(3, A(4, 3)) | (n+3個數字2) |
5 | 65533 | A(4, 65533) | A(4, A(5, 1)) | A(4, A(5, 2)) | A(4, A(5, 3)) | |
6 | A(5, 1) | A(5, A(5, 1)) | A(5, A(6, 1)) | A(5, A(6, 2)) | A(5, A(6, 3)) |
反函數
編輯由於函數f (n) = A(n, n)的增加速率非常快,因此其反函數f−1則會以非常慢的速度增加。阿克曼反函數常用α表示。因為A(4, 4)的數量級約等於 ,因此對於一般可能出現的數值n,α(n)均小於5。
阿克曼反函數會出現在一些演算法的時間複雜度分析中,例如併查集或是Chazelle針對最小生成樹的演算法中。有時會使用一些阿克曼函數的變體,例如省略運算式中的-3等,但其增加的速率都相當慢。
以下是一個兩個輸入值的阿克曼反函數,其中 為下取整函數:
許多演算法的複雜度分析會用到此函數,可以以此得到一個較好的時間上限。在併查集的資料結構中,m表示其運算的次數,而n表示元素的個數。在最小生成樹演算法中,m表示其邊的個數,而n表示其頂點的個數。
有些定義方式會用上述的定義略作修改,例如log2 n改為n,或是下取整函數改為上取整函數。
有些研究則是用上述的定義,但是令m為常數,因此只需要一個輸入值[2]。
參見
編輯參照
編輯- Wilhelm Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Annalen 99 (1928), pp. 118-133.
- von Heijenoort. From Frege To Gödel, 1967. This is an invaluable reference in understanding the context of Ackermann's paper On Hilbert’s Construction of the Real Numbers, containing his paper as well as Hilbert’s On The Infinite and Gödel’s two papers on the completeness and consistency of mathematics.
- Raphael M. Robinson, Recursion and double recursion, Bull. Amer. Math. Soc., Vol. 54, pp. 987-993.
參考資料
編輯外部連結
編輯- Erich Friedman's page on Ackermann at Stetson University
- Scott Aaronson, Who can name the biggest number? (頁面存檔備份,存於互聯網檔案館) (1999)
- Some values of the Ackermann function (頁面存檔備份,存於互聯網檔案館).
- Example use of the Ackermann function as a benchmark (頁面存檔備份,存於互聯網檔案館). Note the huge number of function calls used in computing low values.
- Decimal expansion of A(4,2)
- Hyper-operations (頁面存檔備份,存於互聯網檔案館) Posting on A New Kind of Science Forum discussing the arithmetic operators of the Ackermann function and their inverse operators with link to an extended article on the subject.
- Robert Munafo's Versions of Ackermann's Function describes several variations on the definition of A.
- Zach, Richard,"Hilbert's Program" (頁面存檔備份,存於互聯網檔案館), The Stanford Encyclopedia of Philosophy (Fall 2003 Edition), Edward N. Zalta (ed.)