阿多米安分解法
阿多米安分解法(Adomian decomposition method,簡稱:ADM法),是1989年美國籍阿馬尼亞數學家George Adomian創建的近似分解法,用以求解非線性偏微分方程[1][2]
將非線性偏微分方程寫成如下形式:
其中 L、R為線性偏微分算子,NL為非線性項。 將反算子. 用於上式
.
得
.
令方程的解u(x,t) 為:
非線性項
NL(u)=
其中
由此得
近似解=
Burgers-Fisher 方程 ADM解
編輯Burgers-Fisher方程:
近似解:
pa := (-1.*tanh(x)-82360.*tanh(x)^13+73.*tanh(x)^3-1195.*tanh(x)^5+8233.*tanh(x)^7-29990.*tanh(x)^9+63510.*tanh(x)^15-26980.*tanh(x)^17+4862.*tanh(x)^19+63850.*tanh(x)^11)*t^9+(14650.*tanh(x)^13-16170.*tanh(x)^11+tanh(x)+1430.*tanh(x)^17+688.8*tanh(x)^5+10230.*tanh(x)^9-7102.*tanh(x)^15-54.67*tanh(x)^3-3672.*tanh(x)^7)*t^8+(-373.8*tanh(x)^5+1491.*tanh(x)^7-1.*tanh(x)+39.67*tanh(x)^3+3333.*tanh(x)^11+429.*tanh(x)^15-3036.*tanh(x)^9-1881.*tanh(x)^13)*t^7+(132.*tanh(x)^13+187.8*tanh(x)^5-502.*tanh(x)^11+743.5*tanh(x)^9-27.67*tanh(x)^3+tanh(x)-534.6*tanh(x)^7)*t^6+(-135.3*tanh(x)^9+161.1*tanh(x)^7-1.*tanh(x)+42.*tanh(x)^11-85.13*tanh(x)^5+18.33*tanh(x)^3)*t^5+(-37.*tanh(x)^7+33.33*tanh(x)^5+14.*tanh(x)^9-11.33*tanh(x)^3+tanh(x))*t^4+(5.*tanh(x)^7-10.33*tanh(x)^5+6.333*tanh(x)^3-1.*tanh(x))*t^3+(-3.*tanh(x)^3+tanh(x)+2.*tanh(x)^5)*t^2+(-1.*tanh(x)+tanh(x)^3)*t+tanh(x)
迪姆方程ADM解
編輯迪姆方程:
ADM近似:
u(x,t)~pa := (-.5382*sinh(10.*x)-.7224*sinh(8.*x)-.2441*sinh(6.*x)-0.5787e-4*sinh(2.*x)-0.1693e-1*sinh(4.*x))*t^9+(.4634*cosh(9.*x)+0.5933e-2*cosh(3.*x)+.5585*cosh(7.*x)+.1514*cosh(5.*x)+0.1356e-5*cosh(x))*t^8+(-.4063*sinh(8.*x)-0.8889e-1*sinh(4.*x)-.4339*sinh(6.*x)-0.1389e-2*sinh(2.*x))*t^7+(0.1085e-3*cosh(x)+0.4746e-1*cosh(3.*x)+.3647*cosh(7.*x)+.3391*cosh(5.*x))*t^6+(-0.2083e-1*sinh(2.*x)-.2667*sinh(4.*x)-.3375*sinh(6.*x))*t^5+(.3255*cosh(5.*x)+0.5208e-2*cosh(x)+.2109*cosh(3.*x))*t^4+(-.3333*sinh(4.*x)-.1667*sinh(2.*x))*t^3+(.3750*cosh(3.*x)+.1250*cosh(x))*t^2-.5000*t*sinh(2.*x)+cosh(x)